Loading [MathJax]/extensions/tex2jax.js

Informed Circular Fields for Global Reactive Obstacle Avoidance of Robotic Manipulators

Publikation: Beitrag in FachzeitschriftKonferenzaufsatz in FachzeitschriftForschungPeer-Review

Autorschaft

Organisationseinheiten

Externe Organisationen

  • Technische Universität München (TUM)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 5
  • Captures
    • Readers: 5
see details

Details

OriginalspracheEnglisch
Seiten (von - bis)1017-1022
Seitenumfang6
FachzeitschriftIFAC-PapersOnLine
Jahrgang56
Ausgabenummer2
Frühes Online-Datum23 Nov. 2023
PublikationsstatusVeröffentlicht - 2023
Veranstaltung22nd IFAC World Congress - Yokohama, Japan
Dauer: 9 Juli 202314 Juli 2023

Abstract

In this paper a global reactive motion planning framework for robotic manipulators in complex dynamic environments is presented. In particular, the circular field predictions (CFP) planner from Becker et al. (2021) is extended to ensure obstacle avoidance of the whole structure of a robotic manipulator. Towards this end, a motion planning framework is developed that leverages global information about promising avoidance directions from arbitrary configuration space motion planners, resulting in improved global trajectories while reactively avoiding dynamic obstacles and decreasing the required computational power. The resulting motion planning framework is tested in multiple simulations with complex and dynamic obstacles and demonstrates great potential compared to existing motion planning approaches.

ASJC Scopus Sachgebiete

Zitieren

Informed Circular Fields for Global Reactive Obstacle Avoidance of Robotic Manipulators. / Becker, Marvin; Caspers, Philipp; Hattendorf, Tom et al.
in: IFAC-PapersOnLine, Jahrgang 56, Nr. 2, 2023, S. 1017-1022.

Publikation: Beitrag in FachzeitschriftKonferenzaufsatz in FachzeitschriftForschungPeer-Review

Becker M, Caspers P, Hattendorf T, Lilge T, Haddadin S, Müller MA. Informed Circular Fields for Global Reactive Obstacle Avoidance of Robotic Manipulators. IFAC-PapersOnLine. 2023;56(2):1017-1022. Epub 2023 Nov 23. doi: 10.1016/j.ifacol.2023.10.1698, 10.48550/arXiv.2212.05815
Becker, Marvin ; Caspers, Philipp ; Hattendorf, Tom et al. / Informed Circular Fields for Global Reactive Obstacle Avoidance of Robotic Manipulators. in: IFAC-PapersOnLine. 2023 ; Jahrgang 56, Nr. 2. S. 1017-1022.
Download
@article{70a40f55feed4f87a31e461c37865c4f,
title = "Informed Circular Fields for Global Reactive Obstacle Avoidance of Robotic Manipulators",
abstract = "In this paper a global reactive motion planning framework for robotic manipulators in complex dynamic environments is presented. In particular, the circular field predictions (CFP) planner from Becker et al. (2021) is extended to ensure obstacle avoidance of the whole structure of a robotic manipulator. Towards this end, a motion planning framework is developed that leverages global information about promising avoidance directions from arbitrary configuration space motion planners, resulting in improved global trajectories while reactively avoiding dynamic obstacles and decreasing the required computational power. The resulting motion planning framework is tested in multiple simulations with complex and dynamic obstacles and demonstrates great potential compared to existing motion planning approaches.",
keywords = "Autonomous robotic systems, Guidance navigation and control, Motion Planning, Real-Time Collision Avoidance, Robots manipulators",
author = "Marvin Becker and Philipp Caspers and Tom Hattendorf and Torsten Lilge and Sami Haddadin and M{\"u}ller, {Matthias A.}",
note = "Publisher Copyright: Copyright {\textcopyright} 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/); 22nd IFAC World Congress ; Conference date: 09-07-2023 Through 14-07-2023",
year = "2023",
doi = "10.1016/j.ifacol.2023.10.1698",
language = "English",
volume = "56",
pages = "1017--1022",
number = "2",

}

Download

TY - JOUR

T1 - Informed Circular Fields for Global Reactive Obstacle Avoidance of Robotic Manipulators

AU - Becker, Marvin

AU - Caspers, Philipp

AU - Hattendorf, Tom

AU - Lilge, Torsten

AU - Haddadin, Sami

AU - Müller, Matthias A.

N1 - Publisher Copyright: Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

PY - 2023

Y1 - 2023

N2 - In this paper a global reactive motion planning framework for robotic manipulators in complex dynamic environments is presented. In particular, the circular field predictions (CFP) planner from Becker et al. (2021) is extended to ensure obstacle avoidance of the whole structure of a robotic manipulator. Towards this end, a motion planning framework is developed that leverages global information about promising avoidance directions from arbitrary configuration space motion planners, resulting in improved global trajectories while reactively avoiding dynamic obstacles and decreasing the required computational power. The resulting motion planning framework is tested in multiple simulations with complex and dynamic obstacles and demonstrates great potential compared to existing motion planning approaches.

AB - In this paper a global reactive motion planning framework for robotic manipulators in complex dynamic environments is presented. In particular, the circular field predictions (CFP) planner from Becker et al. (2021) is extended to ensure obstacle avoidance of the whole structure of a robotic manipulator. Towards this end, a motion planning framework is developed that leverages global information about promising avoidance directions from arbitrary configuration space motion planners, resulting in improved global trajectories while reactively avoiding dynamic obstacles and decreasing the required computational power. The resulting motion planning framework is tested in multiple simulations with complex and dynamic obstacles and demonstrates great potential compared to existing motion planning approaches.

KW - Autonomous robotic systems

KW - Guidance navigation and control

KW - Motion Planning

KW - Real-Time Collision Avoidance

KW - Robots manipulators

UR - http://www.scopus.com/inward/record.url?scp=85181631254&partnerID=8YFLogxK

U2 - 10.1016/j.ifacol.2023.10.1698

DO - 10.1016/j.ifacol.2023.10.1698

M3 - Conference article

VL - 56

SP - 1017

EP - 1022

JO - IFAC-PapersOnLine

JF - IFAC-PapersOnLine

SN - 2405-8963

IS - 2

T2 - 22nd IFAC World Congress

Y2 - 9 July 2023 through 14 July 2023

ER -

Von denselben Autoren