Details
Original language | English |
---|---|
Article number | 1439 |
Journal | ENERGIES |
Volume | 16 |
Issue number | 3 |
Publication status | Published - 1 Feb 2023 |
Abstract
Hydrogen is a promising fuel to decarbonize aviation, but macroeconomic studies are currently missing. Computable general equilibrium (CGE) models are suitable to conduct macroeconomic analyses and are frequently employed in hydrogen and aviation research. The main objective of this paper is to investigate existing CGE studies related to (a) hydrogen and (b) aviation to derive a macroeconomic research agenda for hydrogen-powered aviation. Therefore, the well-established method of systematic literature review is conducted. First, we provide an overview of 18 hydrogen-related and 27 aviation-related CGE studies and analyze the literature with respect to appropriate categories. Second, we highlight key insights and identify research gaps for both the hydrogen- and aviation-related CGE literature. Our findings comprise, inter alia, hydrogen’s current lack of cost competitiveness and the macroeconomic relevance of air transportation. Research gaps include, among others, a stronger focus on sustainable hydrogen and a more holistic perspective on the air transportation system. Third, we derive implications for macroeconomic research on hydrogen-powered aviation, including (I) the consideration of existing modeling approaches, (II) the utilization of interdisciplinary data and scenarios, (III) geographical suitability, (IV) the application of diverse policy tools and (V) a holistic perspective. Our work contributes a meaningful foundation for macroeconomic studies on hydrogen-powered aviation. Moreover, we recommend policymakers to address the macroeconomic perspectives of hydrogen use in air transportation.
Keywords
- air transportation, computable general equilibrium model, hydrogen, macroeconomics, sustainable aviation, systematic literature review
ASJC Scopus subject areas
- Energy(all)
- Renewable Energy, Sustainability and the Environment
- Engineering(all)
- Building and Construction
- Energy(all)
- Fuel Technology
- Engineering(all)
- Engineering (miscellaneous)
- Energy(all)
- Energy Engineering and Power Technology
- Energy(all)
- Energy (miscellaneous)
- Mathematics(all)
- Control and Optimization
- Engineering(all)
- Electrical and Electronic Engineering
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: ENERGIES, Vol. 16, No. 3, 1439, 01.02.2023.
Research output: Contribution to journal › Review article › Research › peer review
}
TY - JOUR
T1 - Fostering Macroeconomic Research on Hydrogen-Powered Aviation
T2 - A Systematic Literature Review on General Equilibrium Models
AU - Mueller, Tobias
AU - Gronau, Steven
N1 - Funding Information: Tobias Mueller gratefully acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC—2163/1—Sustainable and Energy-Efficient Aviation—Project-ID 390881007. Steven Gronau acknowledges the financial support from the Federal Ministry of Education and Research of Germany, within the framework of HyNEAT, under Grant No. 03SF0670A. The publication of this article was partially funded by the Open Access Fund of Leibniz Universität Hannover.
PY - 2023/2/1
Y1 - 2023/2/1
N2 - Hydrogen is a promising fuel to decarbonize aviation, but macroeconomic studies are currently missing. Computable general equilibrium (CGE) models are suitable to conduct macroeconomic analyses and are frequently employed in hydrogen and aviation research. The main objective of this paper is to investigate existing CGE studies related to (a) hydrogen and (b) aviation to derive a macroeconomic research agenda for hydrogen-powered aviation. Therefore, the well-established method of systematic literature review is conducted. First, we provide an overview of 18 hydrogen-related and 27 aviation-related CGE studies and analyze the literature with respect to appropriate categories. Second, we highlight key insights and identify research gaps for both the hydrogen- and aviation-related CGE literature. Our findings comprise, inter alia, hydrogen’s current lack of cost competitiveness and the macroeconomic relevance of air transportation. Research gaps include, among others, a stronger focus on sustainable hydrogen and a more holistic perspective on the air transportation system. Third, we derive implications for macroeconomic research on hydrogen-powered aviation, including (I) the consideration of existing modeling approaches, (II) the utilization of interdisciplinary data and scenarios, (III) geographical suitability, (IV) the application of diverse policy tools and (V) a holistic perspective. Our work contributes a meaningful foundation for macroeconomic studies on hydrogen-powered aviation. Moreover, we recommend policymakers to address the macroeconomic perspectives of hydrogen use in air transportation.
AB - Hydrogen is a promising fuel to decarbonize aviation, but macroeconomic studies are currently missing. Computable general equilibrium (CGE) models are suitable to conduct macroeconomic analyses and are frequently employed in hydrogen and aviation research. The main objective of this paper is to investigate existing CGE studies related to (a) hydrogen and (b) aviation to derive a macroeconomic research agenda for hydrogen-powered aviation. Therefore, the well-established method of systematic literature review is conducted. First, we provide an overview of 18 hydrogen-related and 27 aviation-related CGE studies and analyze the literature with respect to appropriate categories. Second, we highlight key insights and identify research gaps for both the hydrogen- and aviation-related CGE literature. Our findings comprise, inter alia, hydrogen’s current lack of cost competitiveness and the macroeconomic relevance of air transportation. Research gaps include, among others, a stronger focus on sustainable hydrogen and a more holistic perspective on the air transportation system. Third, we derive implications for macroeconomic research on hydrogen-powered aviation, including (I) the consideration of existing modeling approaches, (II) the utilization of interdisciplinary data and scenarios, (III) geographical suitability, (IV) the application of diverse policy tools and (V) a holistic perspective. Our work contributes a meaningful foundation for macroeconomic studies on hydrogen-powered aviation. Moreover, we recommend policymakers to address the macroeconomic perspectives of hydrogen use in air transportation.
KW - air transportation
KW - computable general equilibrium model
KW - hydrogen
KW - macroeconomics
KW - sustainable aviation
KW - systematic literature review
UR - http://www.scopus.com/inward/record.url?scp=85147979885&partnerID=8YFLogxK
U2 - 10.3390/en16031439
DO - 10.3390/en16031439
M3 - Review article
AN - SCOPUS:85147979885
VL - 16
JO - ENERGIES
JF - ENERGIES
SN - 1996-1073
IS - 3
M1 - 1439
ER -