Details
Translated title of the contribution | Temperaturerfassung im Reibkontakt mittels bauteilinterner Sensoren zur verbesserten Verschleißvorhersage |
---|---|
Original language | English |
Qualification | Doctor of Engineering |
Awarding Institution | |
Supervised by |
|
Date of Award | 28 Mar 2024 |
Place of Publication | Garbsen |
Print ISBNs | 9783959009461 |
Publication status | Published - 2024 |
Abstract
Keywords
- Temperature sensors, laser ablation, high temperature sensor, laser direct structuring, atmospheric dependency, frictional contact zone
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Garbsen, 2024. 170 p.
Research output: Thesis › Doctoral thesis
}
TY - BOOK
T1 - Detection of temperature in frictional contact by means of component-inherent sensors for enhanced wear prediction
AU - Raumel, Selina
PY - 2024
Y1 - 2024
N2 - Within the scope of this work conducted in the Collaborative Research Center 1368 »Oxygen-free production”, a new component-inherent sensor concept on non-planar surfaces is presented for measuring friction-induced temperature changes as a function of atmosphere, process parameters and ambient temperature during frictional ball-on-disc tests to improve wear prediction. The development and manufacturing of the platinum thin-film sensors on ceramic spheres via laser ablation involves the characterization of suitable sensor layouts, wear-resistant/isolation and friction layers. A laser structuring process is developed for machinable BN+AlN components to enable mechanical contacting of the sensors via the ball mount outside the friction contact area. Using an expanded measurement setup, friction tests are conducted under ambient atmosphere and under an atmosphere adequate to an extremely high vacuum using a silane-doped argon gas. To assess the fundamental effects of the friction-induced temperatures and their impact on resulting boundary layers, surface-sensitive analysis techniques are employed. Indentation tests are conducted in a high-temperature chamber to examine the thermomechanical properties in dependence of the surrounding atmosphere. The insights gained are utilized to expand the well known Archard wear model by including the dependence of the measured friction-induced temperature and atmosphere
AB - Within the scope of this work conducted in the Collaborative Research Center 1368 »Oxygen-free production”, a new component-inherent sensor concept on non-planar surfaces is presented for measuring friction-induced temperature changes as a function of atmosphere, process parameters and ambient temperature during frictional ball-on-disc tests to improve wear prediction. The development and manufacturing of the platinum thin-film sensors on ceramic spheres via laser ablation involves the characterization of suitable sensor layouts, wear-resistant/isolation and friction layers. A laser structuring process is developed for machinable BN+AlN components to enable mechanical contacting of the sensors via the ball mount outside the friction contact area. Using an expanded measurement setup, friction tests are conducted under ambient atmosphere and under an atmosphere adequate to an extremely high vacuum using a silane-doped argon gas. To assess the fundamental effects of the friction-induced temperatures and their impact on resulting boundary layers, surface-sensitive analysis techniques are employed. Indentation tests are conducted in a high-temperature chamber to examine the thermomechanical properties in dependence of the surrounding atmosphere. The insights gained are utilized to expand the well known Archard wear model by including the dependence of the measured friction-induced temperature and atmosphere
KW - Temperature sensors
KW - laser ablation
KW - high temperature sensor
KW - laser direct structuring
KW - atmospheric dependency
KW - frictional contact zone
U2 - 10.51202/9783959009461
DO - 10.51202/9783959009461
M3 - Doctoral thesis
SN - 9783959009461
T3 - Berichte aus dem impt
CY - Garbsen
ER -