Details
Original language | English |
---|---|
Pages (from-to) | 119-132 |
Number of pages | 14 |
Journal | ISPRS Journal of Photogrammetry and Remote Sensing |
Volume | 171 |
Early online date | 26 Nov 2020 |
Publication status | Published - Jan 2021 |
Abstract
Terrestrial laser scanners (TLS) record a large number of points within a short time. Temporal correlations between observations are unavoidable but often neglected in stochastic modelling. The main consequences are an overestimated precision of the point clouds and potential wrong test decisions when used for deformation analysis with rigorous statistical procedures. Regarding physical considerations, a fractional Gaussian noise, defined by a so-called Hurst exponent, or a combination of fractional Gaussian noises could be used to model the noise of range measurements from a sensor perspective; Temporal correlations are expected to have a long-range dependency due to the high recording rate of the TLS. Scanning settings and configurations can affect the global correlation parameters. These effects can be quantified from the residuals of a least-squares surface approximation from the TLS point cloud. Based on simulation results, real data correlation analysis from indoor and outdoor experiments can be better understood which makes the identification of the dominant correlating noise source possible. Our methodology combines two Hurst-estimators: the Whittle maximum likelihood and the generalised Hurst estimator; It paves the way for a simple and global model for describing the temporal noise of TLS range correlations, usable in point clouds analysis independently of the object under consideration.
Keywords
- Correlations, Hurst parameter, Least-squares, Residuals, Terrestrial Laser Scanner
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Atomic and Molecular Physics, and Optics
- Engineering(all)
- Engineering (miscellaneous)
- Computer Science(all)
- Computer Science Applications
- Earth and Planetary Sciences(all)
- Computers in Earth Sciences
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 171, 01.2021, p. 119-132.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Analysis of the temporal correlations of TLS range observations from plane fitting residuals
AU - Kermarrec, Gaël
AU - Lösler, Michael
AU - Hartmann, Jens
N1 - Funding Information: This study is supported by the Deutsche Forschungsgemeinschaft under the project KE2453/2-1. The authors warmly thank Kamiel-Karl Heidberg and Jan Jüngerink for having performed the indoor and outdoor measurements.
PY - 2021/1
Y1 - 2021/1
N2 - Terrestrial laser scanners (TLS) record a large number of points within a short time. Temporal correlations between observations are unavoidable but often neglected in stochastic modelling. The main consequences are an overestimated precision of the point clouds and potential wrong test decisions when used for deformation analysis with rigorous statistical procedures. Regarding physical considerations, a fractional Gaussian noise, defined by a so-called Hurst exponent, or a combination of fractional Gaussian noises could be used to model the noise of range measurements from a sensor perspective; Temporal correlations are expected to have a long-range dependency due to the high recording rate of the TLS. Scanning settings and configurations can affect the global correlation parameters. These effects can be quantified from the residuals of a least-squares surface approximation from the TLS point cloud. Based on simulation results, real data correlation analysis from indoor and outdoor experiments can be better understood which makes the identification of the dominant correlating noise source possible. Our methodology combines two Hurst-estimators: the Whittle maximum likelihood and the generalised Hurst estimator; It paves the way for a simple and global model for describing the temporal noise of TLS range correlations, usable in point clouds analysis independently of the object under consideration.
AB - Terrestrial laser scanners (TLS) record a large number of points within a short time. Temporal correlations between observations are unavoidable but often neglected in stochastic modelling. The main consequences are an overestimated precision of the point clouds and potential wrong test decisions when used for deformation analysis with rigorous statistical procedures. Regarding physical considerations, a fractional Gaussian noise, defined by a so-called Hurst exponent, or a combination of fractional Gaussian noises could be used to model the noise of range measurements from a sensor perspective; Temporal correlations are expected to have a long-range dependency due to the high recording rate of the TLS. Scanning settings and configurations can affect the global correlation parameters. These effects can be quantified from the residuals of a least-squares surface approximation from the TLS point cloud. Based on simulation results, real data correlation analysis from indoor and outdoor experiments can be better understood which makes the identification of the dominant correlating noise source possible. Our methodology combines two Hurst-estimators: the Whittle maximum likelihood and the generalised Hurst estimator; It paves the way for a simple and global model for describing the temporal noise of TLS range correlations, usable in point clouds analysis independently of the object under consideration.
KW - Correlations
KW - Hurst parameter
KW - Least-squares
KW - Residuals
KW - Terrestrial Laser Scanner
UR - http://www.scopus.com/inward/record.url?scp=85096824053&partnerID=8YFLogxK
U2 - 10.15488/11164
DO - 10.15488/11164
M3 - Article
VL - 171
SP - 119
EP - 132
JO - ISPRS Journal of Photogrammetry and Remote Sensing
JF - ISPRS Journal of Photogrammetry and Remote Sensing
SN - 0924-2716
ER -