Details
Original language | English |
---|---|
Article number | 110643 |
Journal | Mechanical Systems and Signal Processing |
Volume | 200 |
Early online date | 4 Aug 2023 |
Publication status | Published - 1 Oct 2023 |
Abstract
This paper presents an efficient multi-fidelity scheme to simulate multi-dimensional non-Gaussian random fields that are specified by covariance functions and marginal probability distribution functions. To develop the multi-fidelity scheme, two numerical algorithms are proposed in turn. The first algorithm is used to simulate random samples of the random field. In this algorithm, initial random samples are first generated to meet the marginal distribution and an iterative procedure is adopted to change the ranking of the random samples to match the target covariance function. By using the above algorithm, random samples satisfying the target covariance function and the target marginal distribution are obtained, but it is computationally intensive and is not suitable to simulate large-scale random fields. By taking advantage of Karhunen–Loève expansion, a multi-fidelity algorithm is then proposed to reduce the computational effort. The random variables in Karhunen–Loève expansion are calculated via performing the first algorithm on the low-fidelity model and the deterministic functions in Karhunen–Loève expansion are solved on the high-fidelity model. In this way, the proposed method has low computational effort and a high fidelity simultaneously. Three numerical examples, including two- and three-dimensional non-Gaussian random fields, are used to verify the good performance of the proposed algorithms.
Keywords
- Karhunen–Loève expansion, Multi-dimensional random fields, Multi-fidelity algorithm, Non-Gaussian, Non-stationary
ASJC Scopus subject areas
- Engineering(all)
- Control and Systems Engineering
- Computer Science(all)
- Signal Processing
- Engineering(all)
- Civil and Structural Engineering
- Engineering(all)
- Aerospace Engineering
- Engineering(all)
- Mechanical Engineering
- Computer Science(all)
- Computer Science Applications
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Mechanical Systems and Signal Processing, Vol. 200, 110643, 01.10.2023.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - An iterative multi-fidelity scheme for simulating multi-dimensional non-Gaussian random fields
AU - Zheng, Zhibao
AU - Beer, Michael
AU - Nackenhorst, Udo
N1 - Funding Information: The authors are grateful to the Alexander von Humboldt Foundation and the International Research Training Group 2657 (IRTG 2657) funded by the German Research Foundation (DFG) (Grant number 433082294 ).
PY - 2023/10/1
Y1 - 2023/10/1
N2 - This paper presents an efficient multi-fidelity scheme to simulate multi-dimensional non-Gaussian random fields that are specified by covariance functions and marginal probability distribution functions. To develop the multi-fidelity scheme, two numerical algorithms are proposed in turn. The first algorithm is used to simulate random samples of the random field. In this algorithm, initial random samples are first generated to meet the marginal distribution and an iterative procedure is adopted to change the ranking of the random samples to match the target covariance function. By using the above algorithm, random samples satisfying the target covariance function and the target marginal distribution are obtained, but it is computationally intensive and is not suitable to simulate large-scale random fields. By taking advantage of Karhunen–Loève expansion, a multi-fidelity algorithm is then proposed to reduce the computational effort. The random variables in Karhunen–Loève expansion are calculated via performing the first algorithm on the low-fidelity model and the deterministic functions in Karhunen–Loève expansion are solved on the high-fidelity model. In this way, the proposed method has low computational effort and a high fidelity simultaneously. Three numerical examples, including two- and three-dimensional non-Gaussian random fields, are used to verify the good performance of the proposed algorithms.
AB - This paper presents an efficient multi-fidelity scheme to simulate multi-dimensional non-Gaussian random fields that are specified by covariance functions and marginal probability distribution functions. To develop the multi-fidelity scheme, two numerical algorithms are proposed in turn. The first algorithm is used to simulate random samples of the random field. In this algorithm, initial random samples are first generated to meet the marginal distribution and an iterative procedure is adopted to change the ranking of the random samples to match the target covariance function. By using the above algorithm, random samples satisfying the target covariance function and the target marginal distribution are obtained, but it is computationally intensive and is not suitable to simulate large-scale random fields. By taking advantage of Karhunen–Loève expansion, a multi-fidelity algorithm is then proposed to reduce the computational effort. The random variables in Karhunen–Loève expansion are calculated via performing the first algorithm on the low-fidelity model and the deterministic functions in Karhunen–Loève expansion are solved on the high-fidelity model. In this way, the proposed method has low computational effort and a high fidelity simultaneously. Three numerical examples, including two- and three-dimensional non-Gaussian random fields, are used to verify the good performance of the proposed algorithms.
KW - Karhunen–Loève expansion
KW - Multi-dimensional random fields
KW - Multi-fidelity algorithm
KW - Non-Gaussian
KW - Non-stationary
UR - http://www.scopus.com/inward/record.url?scp=85166659302&partnerID=8YFLogxK
U2 - 10.1016/j.ymssp.2023.110643
DO - 10.1016/j.ymssp.2023.110643
M3 - Article
AN - SCOPUS:85166659302
VL - 200
JO - Mechanical Systems and Signal Processing
JF - Mechanical Systems and Signal Processing
SN - 0888-3270
M1 - 110643
ER -