Loading [MathJax]/extensions/tex2jax.js

Algebraic cycles on hyper-Kähler varieties of generalized Kummer type

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Salvatore Floccari
  • Mauro Varesco

Research Organisations

External Research Organisations

  • Bielefeld University
  • University of Bonn

Details

Original languageEnglish
Pages (from-to)4443–4453
Number of pages11
JournalMathematische Annalen
Volume391
Issue number3
Early online date5 Nov 2024
Publication statusPublished - Mar 2025

Abstract

We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\"ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic.

Keywords

    math.AG

ASJC Scopus subject areas

Cite this

Algebraic cycles on hyper-Kähler varieties of generalized Kummer type. / Floccari, Salvatore; Varesco, Mauro.
In: Mathematische Annalen, Vol. 391, No. 3, 03.2025, p. 4443–4453.

Research output: Contribution to journalArticleResearchpeer review

Floccari S, Varesco M. Algebraic cycles on hyper-Kähler varieties of generalized Kummer type. Mathematische Annalen. 2025 Mar;391(3):4443–4453. Epub 2024 Nov 5. doi: 10.1007/s00208-024-03027-z, 10.48550/arXiv.2308.04865
Floccari, Salvatore ; Varesco, Mauro. / Algebraic cycles on hyper-Kähler varieties of generalized Kummer type. In: Mathematische Annalen. 2025 ; Vol. 391, No. 3. pp. 4443–4453.
Download
@article{f4917474bcd7479ba4a88f2b29c0e340,
title = "Algebraic cycles on hyper-K{\"a}hler varieties of generalized Kummer type",
abstract = " We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\{"}ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic. ",
keywords = "math.AG",
author = "Salvatore Floccari and Mauro Varesco",
year = "2025",
month = mar,
doi = "10.1007/s00208-024-03027-z",
language = "English",
volume = "391",
pages = "4443–4453",
journal = "Mathematische Annalen",
issn = "0025-5831",
publisher = "Springer New York",
number = "3",

}

Download

TY - JOUR

T1 - Algebraic cycles on hyper-Kähler varieties of generalized Kummer type

AU - Floccari, Salvatore

AU - Varesco, Mauro

PY - 2025/3

Y1 - 2025/3

N2 - We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\"ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic.

AB - We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\"ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic.

KW - math.AG

UR - http://www.scopus.com/inward/record.url?scp=85208197890&partnerID=8YFLogxK

U2 - 10.1007/s00208-024-03027-z

DO - 10.1007/s00208-024-03027-z

M3 - Article

VL - 391

SP - 4443

EP - 4453

JO - Mathematische Annalen

JF - Mathematische Annalen

SN - 0025-5831

IS - 3

ER -