Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 4443–4453 |
Seitenumfang | 11 |
Fachzeitschrift | Mathematische Annalen |
Jahrgang | 391 |
Ausgabenummer | 3 |
Frühes Online-Datum | 5 Nov. 2024 |
Publikationsstatus | Veröffentlicht - März 2025 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematische Annalen, Jahrgang 391, Nr. 3, 03.2025, S. 4443–4453.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Algebraic cycles on hyper-Kähler varieties of generalized Kummer type
AU - Floccari, Salvatore
AU - Varesco, Mauro
PY - 2025/3
Y1 - 2025/3
N2 - We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\"ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic.
AB - We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\"ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic.
KW - math.AG
UR - http://www.scopus.com/inward/record.url?scp=85208197890&partnerID=8YFLogxK
U2 - 10.1007/s00208-024-03027-z
DO - 10.1007/s00208-024-03027-z
M3 - Article
VL - 391
SP - 4443
EP - 4453
JO - Mathematische Annalen
JF - Mathematische Annalen
SN - 0025-5831
IS - 3
ER -