Loading [MathJax]/extensions/tex2jax.js

Algebraic cycles on hyper-Kähler varieties of generalized Kummer type

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Salvatore Floccari
  • Mauro Varesco

Organisationseinheiten

Externe Organisationen

  • Universität Bielefeld
  • Rheinische Friedrich-Wilhelms-Universität Bonn

Details

OriginalspracheEnglisch
Seiten (von - bis)4443–4453
Seitenumfang11
FachzeitschriftMathematische Annalen
Jahrgang391
Ausgabenummer3
Frühes Online-Datum5 Nov. 2024
PublikationsstatusVeröffentlicht - März 2025

Abstract

We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\"ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic.

ASJC Scopus Sachgebiete

Zitieren

Algebraic cycles on hyper-Kähler varieties of generalized Kummer type. / Floccari, Salvatore; Varesco, Mauro.
in: Mathematische Annalen, Jahrgang 391, Nr. 3, 03.2025, S. 4443–4453.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Floccari S, Varesco M. Algebraic cycles on hyper-Kähler varieties of generalized Kummer type. Mathematische Annalen. 2025 Mär;391(3):4443–4453. Epub 2024 Nov 5. doi: 10.1007/s00208-024-03027-z, 10.48550/arXiv.2308.04865
Floccari, Salvatore ; Varesco, Mauro. / Algebraic cycles on hyper-Kähler varieties of generalized Kummer type. in: Mathematische Annalen. 2025 ; Jahrgang 391, Nr. 3. S. 4443–4453.
Download
@article{f4917474bcd7479ba4a88f2b29c0e340,
title = "Algebraic cycles on hyper-K{\"a}hler varieties of generalized Kummer type",
abstract = " We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\{"}ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic. ",
keywords = "math.AG",
author = "Salvatore Floccari and Mauro Varesco",
year = "2025",
month = mar,
doi = "10.1007/s00208-024-03027-z",
language = "English",
volume = "391",
pages = "4443–4453",
journal = "Mathematische Annalen",
issn = "0025-5831",
publisher = "Springer New York",
number = "3",

}

Download

TY - JOUR

T1 - Algebraic cycles on hyper-Kähler varieties of generalized Kummer type

AU - Floccari, Salvatore

AU - Varesco, Mauro

PY - 2025/3

Y1 - 2025/3

N2 - We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\"ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic.

AB - We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\"ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic.

KW - math.AG

UR - http://www.scopus.com/inward/record.url?scp=85208197890&partnerID=8YFLogxK

U2 - 10.1007/s00208-024-03027-z

DO - 10.1007/s00208-024-03027-z

M3 - Article

VL - 391

SP - 4443

EP - 4453

JO - Mathematische Annalen

JF - Mathematische Annalen

SN - 0025-5831

IS - 3

ER -