A moving horizon state and parameter estimation scheme with guaranteed robust convergence

Research output: Contribution to journalArticleResearchpeer review

View graph of relations

Details

Original languageEnglish
Pages (from-to)6759-6764
Number of pages6
JournalIFAC-PapersOnLine
Volume56
Issue number2
Early online date22 Nov 2022
Publication statusPublished - 2023

Abstract

We propose a moving horizon estimation scheme for joint state and parameter estimation for nonlinear uncertain discrete-time systems. We establish robust exponential convergence of the combined estimation error subject to process disturbances and measurement noise. We employ a joint incremental input/output-to-state stability (δ-IOSS) Lyapunov function to characterize nonlinear detectability for the states and (constant) parameters of the system. Sufficient conditions for the construction of a joint δ-IOSS Lyapunov function are provided for a special class of nonlinear systems using a persistence of excitation condition. The theoretical results are illustrated by a numerical example.

Keywords

    eess.SY, cs.SY, incremental system properties, nonlinear systems, Moving horizon estimation, parametric uncertainties, parameter estimation, state estimation

ASJC Scopus subject areas

Cite this

A moving horizon state and parameter estimation scheme with guaranteed robust convergence. / Schiller, Julian D.; Müller, Matthias A.
In: IFAC-PapersOnLine, Vol. 56, No. 2, 2023, p. 6759-6764.

Research output: Contribution to journalArticleResearchpeer review

Schiller JD, Müller MA. A moving horizon state and parameter estimation scheme with guaranteed robust convergence. IFAC-PapersOnLine. 2023;56(2):6759-6764. Epub 2022 Nov 22. doi: 10.48550/arXiv.2211.09053, 10.1016/j.ifacol.2023.10.382
Download
@article{b97b54bcec434d52ac87cc6e0245c43a,
title = "A moving horizon state and parameter estimation scheme with guaranteed robust convergence",
abstract = "We propose a moving horizon estimation scheme for joint state and parameter estimation for nonlinear uncertain discrete-time systems. We establish robust exponential convergence of the combined estimation error subject to process disturbances and measurement noise. We employ a joint incremental input/output-to-state stability (δ-IOSS) Lyapunov function to characterize nonlinear detectability for the states and (constant) parameters of the system. Sufficient conditions for the construction of a joint δ-IOSS Lyapunov function are provided for a special class of nonlinear systems using a persistence of excitation condition. The theoretical results are illustrated by a numerical example.",
keywords = "eess.SY, cs.SY, incremental system properties, nonlinear systems, Moving horizon estimation, parametric uncertainties, parameter estimation, state estimation",
author = "Schiller, {Julian D.} and M{\"u}ller, {Matthias A.}",
note = "Publisher Copyright: Copyright {\textcopyright} 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)",
year = "2023",
doi = "10.48550/arXiv.2211.09053",
language = "English",
volume = "56",
pages = "6759--6764",
number = "2",

}

Download

TY - JOUR

T1 - A moving horizon state and parameter estimation scheme with guaranteed robust convergence

AU - Schiller, Julian D.

AU - Müller, Matthias A.

N1 - Publisher Copyright: Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

PY - 2023

Y1 - 2023

N2 - We propose a moving horizon estimation scheme for joint state and parameter estimation for nonlinear uncertain discrete-time systems. We establish robust exponential convergence of the combined estimation error subject to process disturbances and measurement noise. We employ a joint incremental input/output-to-state stability (δ-IOSS) Lyapunov function to characterize nonlinear detectability for the states and (constant) parameters of the system. Sufficient conditions for the construction of a joint δ-IOSS Lyapunov function are provided for a special class of nonlinear systems using a persistence of excitation condition. The theoretical results are illustrated by a numerical example.

AB - We propose a moving horizon estimation scheme for joint state and parameter estimation for nonlinear uncertain discrete-time systems. We establish robust exponential convergence of the combined estimation error subject to process disturbances and measurement noise. We employ a joint incremental input/output-to-state stability (δ-IOSS) Lyapunov function to characterize nonlinear detectability for the states and (constant) parameters of the system. Sufficient conditions for the construction of a joint δ-IOSS Lyapunov function are provided for a special class of nonlinear systems using a persistence of excitation condition. The theoretical results are illustrated by a numerical example.

KW - eess.SY

KW - cs.SY

KW - incremental system properties

KW - nonlinear systems

KW - Moving horizon estimation

KW - parametric uncertainties

KW - parameter estimation

KW - state estimation

UR - http://www.scopus.com/inward/record.url?scp=85180623064&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2211.09053

DO - 10.48550/arXiv.2211.09053

M3 - Article

VL - 56

SP - 6759

EP - 6764

JO - IFAC-PapersOnLine

JF - IFAC-PapersOnLine

SN - 2405-8963

IS - 2

ER -

By the same author(s)