Loading [MathJax]/extensions/tex2jax.js

Uncertainty quantification and efficient time-dependent reliability analysis of stochastic dynamic systems

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Details

OriginalspracheEnglisch
QualifikationDoktor der Ingenieurwissenschaften
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades16 Aug. 2024
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 29 Aug. 2024

Abstract

Die vorliegende Arbeit ergänzt Risikobewertungen für das Bauingenieurwesen, die sich mit stochastischen dynamischen Systemen befassen, indem sie sich mit mehreren Unsicherheiten, Nichtlinearitäten und vollzeitabhängigen Analysen befasst. Es wurden zwei große komplementäre Arbeitspakete verfolgt. Erstens wurde ein neuartiges Punktauswahlverfahren für die „Probability Density Evolution Method (PDEM)“ entwickelt, um die Effizienz zu steigern und gleichzeitig die volle dynamische Antwort nichtlinearer dynamischer Systeme beizubehalten. Diese Methode zielt darauf ab, zeitabhängige Zuverlässigkeit und Ausfallwahrscheinlichkeiten in dynamischen Systemen unter Bedingungen der ersten Durchgangszeit für kritische Systemantworten abzuschätzen. Unter Nutzung des Subset-Simulationsverfahrens generiert die vorgeschlagene Subset-unterstützte Punktauswahlmethode (S-PS) adaptiv abhängige Stichprobensätze und erhöht die Genauigkeit durch die Einbeziehung von Gewichtungsfaktoren. Der vorgeschlagene Ansatz identifiziert effektiv Proben im Fehlerbereich, was insbesondere dynamischen Systemen unter stochastischer Anregung zugute kommt. Es bietet ein rechnerisch effizientes Verfahren zur Schätzung der strukturellen Zuverlässigkeit durch die Analyse von Antworten über die Zeit und bietet durch die Visualisierung von Zwischenergebnissen tiefere Einblicke in seltene Fehlerereignisse und -mechanismen. Zweitens wird eine datengesteuerte stochastische Darstellung von EPSD-Funktionen (Evolutionary Power Spectral Density) eingeführt, um Muster und zugrunde liegende Merkmale in natürlichen oder technischen zeitlich variierenden Phänomenen zu identifizieren. Die „Relaxed Evolutionary Power Spectral Density“ (REPSD) Funktion wird aus mehreren ähnlichen Daten abgeleitet, berücksichtigt Unsicherheiten und bietet eine realistische Darstellung von Zeitdaten. Diese Daten können sich aus seismischen Bodenbewegungen oder Windgeschwindigkeitsaufzeichnungen im Zeit-Frequenz-Bereich zusammensetzen. Gestutzte Normalverteilungen und Kerndichteschätzungen werden verwendet, um eine Wahrscheinlichkeitsdichtefunktion für jede Zeit-Frequenz-Komponente zu bestimmen. Die REPSD-Funktion ermöglicht die stochastische Erzeugung einzelner EPSD-Funktionen und erleichtert deren direkte Anwendung auf Simulationsmodelle durch stochastische Simulationen. Schließlich wurden einige grundlegende Konzepte, die für die ersten Formulierungen des REPSD verwendet wurden, experimentell auf einem selbst entwickelten, kostengünstigen, abstimmbaren Erdbebensimulationstisch (Wackeltisch) namens Namazu getestet. Der „Shinozuka Benchmark“ wurde eingeführt und bietet eine generalisierten Test zur Genauigkeit angelegter stochastischer Signale auf dem Tisch und zum Messen der Reaktionen des Tisches im Frequenzbereich. Namazu zeigte eine gute Genauigkeit und kann an die Bedürfnisse der Benutzer angepasst werden. Das Framework wird als OpenAccess Version zugänglich gemacht und sowohl Hardwareteile, Aufbau und Software sind öffentlich dokumentiert.

Zitieren

Uncertainty quantification and efficient time-dependent reliability analysis of stochastic dynamic systems. / Bittner, Marius.
Hannover, 2024. 215 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Bittner, M 2024, 'Uncertainty quantification and efficient time-dependent reliability analysis of stochastic dynamic systems', Doktor der Ingenieurwissenschaften, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/17930
Download
@phdthesis{1ca779fa0d414b87a9b6adc059cca0bf,
title = "Uncertainty quantification and efficient time-dependent reliability analysis of stochastic dynamic systems",
abstract = "The proposed thesis complements generalized risk assessment frameworks for structural engineering tackling stochastic dynamic systems, by addressing multiple uncertainties, non-linearities, and full-time-dependent analyses. Two major complementary work packages have been pursued. Firstly, a novel point selection procedure for the Probability Density Evolution Method (PDEM) has been developed to enhance efficiency while retaining the full dynamic response of non-linear dynamic systems. This method aims to estimate time-dependent reliability and failure probabilities in dynamic systems under first-passage failure conditions. Leveraging features of the Subset simulation procedure, the Subset supported Point Selection (S-PS) method adaptively generates dependent sample sets, enhancing accuracy by incorporating performance function assessments as weighting factors. The proposed approach effectively identifies samples in the failure region, particularly benefiting dynamic systems under stochastic excitation. It offers a computationally efficient structural reliability estimation procedure by analyzing full-time-history responses, providing deeper insights into rare failure events and mechanisms through visualization of intermediate results. Secondly, to address the challenge of identifying patterns and underlying characteristics in natural or engineering time-varying phenomena, a data-driven stochastic representation of Evolutionary Power Spectral Density (EPSD) functions is introduced. The Relaxed Evolutionary Power Spectral Density (REPSD) function is derived from multiple similar data, accounting for uncertainties and providing a realistic representation of time data such as seismic ground motions or wind speed records in the time-frequency domain. Truncated normal distributions and kernel density estimates are used to determine a probability density function for each time-frequency component. The REPSD function enables the sampling of individual EPSD functions, facilitating their direct application to simulation models through stochastic simulation techniques. Illustrative numerical examples demonstrate the method's effectiveness in accounting for uncertainties in EPSD function estimation and representing the accuracy of time-frequency transformations. Finally, some basic concepts used for the initial formulations of the REPSD were experimentally tested on a self-developed, low-cost, tunable shaking table device called Namazu. The {"}Shinozuka Benchmark{"} was introduced, providing a benchmark for testing the accuracy of applied stochastic signals on the table and measuring the responses of the table in the frequency domain. Namazu demonstrated good accuracy and can be adapted to users' needs. The framework has been openly published, and both hardware parts and software are publicly documented.",
author = "Marius Bittner",
year = "2024",
month = aug,
day = "29",
doi = "10.15488/17930",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Uncertainty quantification and efficient time-dependent reliability analysis of stochastic dynamic systems

AU - Bittner, Marius

PY - 2024/8/29

Y1 - 2024/8/29

N2 - The proposed thesis complements generalized risk assessment frameworks for structural engineering tackling stochastic dynamic systems, by addressing multiple uncertainties, non-linearities, and full-time-dependent analyses. Two major complementary work packages have been pursued. Firstly, a novel point selection procedure for the Probability Density Evolution Method (PDEM) has been developed to enhance efficiency while retaining the full dynamic response of non-linear dynamic systems. This method aims to estimate time-dependent reliability and failure probabilities in dynamic systems under first-passage failure conditions. Leveraging features of the Subset simulation procedure, the Subset supported Point Selection (S-PS) method adaptively generates dependent sample sets, enhancing accuracy by incorporating performance function assessments as weighting factors. The proposed approach effectively identifies samples in the failure region, particularly benefiting dynamic systems under stochastic excitation. It offers a computationally efficient structural reliability estimation procedure by analyzing full-time-history responses, providing deeper insights into rare failure events and mechanisms through visualization of intermediate results. Secondly, to address the challenge of identifying patterns and underlying characteristics in natural or engineering time-varying phenomena, a data-driven stochastic representation of Evolutionary Power Spectral Density (EPSD) functions is introduced. The Relaxed Evolutionary Power Spectral Density (REPSD) function is derived from multiple similar data, accounting for uncertainties and providing a realistic representation of time data such as seismic ground motions or wind speed records in the time-frequency domain. Truncated normal distributions and kernel density estimates are used to determine a probability density function for each time-frequency component. The REPSD function enables the sampling of individual EPSD functions, facilitating their direct application to simulation models through stochastic simulation techniques. Illustrative numerical examples demonstrate the method's effectiveness in accounting for uncertainties in EPSD function estimation and representing the accuracy of time-frequency transformations. Finally, some basic concepts used for the initial formulations of the REPSD were experimentally tested on a self-developed, low-cost, tunable shaking table device called Namazu. The "Shinozuka Benchmark" was introduced, providing a benchmark for testing the accuracy of applied stochastic signals on the table and measuring the responses of the table in the frequency domain. Namazu demonstrated good accuracy and can be adapted to users' needs. The framework has been openly published, and both hardware parts and software are publicly documented.

AB - The proposed thesis complements generalized risk assessment frameworks for structural engineering tackling stochastic dynamic systems, by addressing multiple uncertainties, non-linearities, and full-time-dependent analyses. Two major complementary work packages have been pursued. Firstly, a novel point selection procedure for the Probability Density Evolution Method (PDEM) has been developed to enhance efficiency while retaining the full dynamic response of non-linear dynamic systems. This method aims to estimate time-dependent reliability and failure probabilities in dynamic systems under first-passage failure conditions. Leveraging features of the Subset simulation procedure, the Subset supported Point Selection (S-PS) method adaptively generates dependent sample sets, enhancing accuracy by incorporating performance function assessments as weighting factors. The proposed approach effectively identifies samples in the failure region, particularly benefiting dynamic systems under stochastic excitation. It offers a computationally efficient structural reliability estimation procedure by analyzing full-time-history responses, providing deeper insights into rare failure events and mechanisms through visualization of intermediate results. Secondly, to address the challenge of identifying patterns and underlying characteristics in natural or engineering time-varying phenomena, a data-driven stochastic representation of Evolutionary Power Spectral Density (EPSD) functions is introduced. The Relaxed Evolutionary Power Spectral Density (REPSD) function is derived from multiple similar data, accounting for uncertainties and providing a realistic representation of time data such as seismic ground motions or wind speed records in the time-frequency domain. Truncated normal distributions and kernel density estimates are used to determine a probability density function for each time-frequency component. The REPSD function enables the sampling of individual EPSD functions, facilitating their direct application to simulation models through stochastic simulation techniques. Illustrative numerical examples demonstrate the method's effectiveness in accounting for uncertainties in EPSD function estimation and representing the accuracy of time-frequency transformations. Finally, some basic concepts used for the initial formulations of the REPSD were experimentally tested on a self-developed, low-cost, tunable shaking table device called Namazu. The "Shinozuka Benchmark" was introduced, providing a benchmark for testing the accuracy of applied stochastic signals on the table and measuring the responses of the table in the frequency domain. Namazu demonstrated good accuracy and can be adapted to users' needs. The framework has been openly published, and both hardware parts and software are publicly documented.

U2 - 10.15488/17930

DO - 10.15488/17930

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren