Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 2544 |
Fachzeitschrift | Nature Communications |
Jahrgang | 12 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 5 Mai 2021 |
Abstract
Inertial sensors based on cold atoms have great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity increases with the space-time area enclosed by the interferometer. Here, we introduce twin-lattice atom interferometry exploiting Bose-Einstein condensates of rubidium-87. Our method provides symmetric momentum transfer and large areas offering a perspective for future palm-sized sensor heads with sensitivities on par with present meter-scale Sagnac devices. Our theoretical model of the impact of beam splitters on the spatial coherence is highly instrumental for designing future sensors.
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Nature Communications, Jahrgang 12, Nr. 1, 2544, 05.05.2021.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Twin-lattice atom interferometry
AU - Gebbe, Martina
AU - Siemß, Jan-Niclas
AU - Gersemann, Matthias
AU - Müntinga, Hauke
AU - Herrmann, Sven
AU - Lämmerzahl, Claus
AU - Ahlers, Holger
AU - Gaaloul, Naceur
AU - Schubert, Christian
AU - Hammerer, Klemens
AU - Abend, Sven
AU - Ertmer, Wolfgang
AU - Rasel, Ernst M.
N1 - Funding Information: We thank E. Giese, A. Friedrich, J. Jenewein, A. Roura, Z. Pagel, M. Jaffe, P. Haslinger, and H. Müller for fruitful discussions. This work is funded by the Deutsche For-schungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967 within research units B02 and B05 and through the CRC 1227 (DQ-mat) within Project Nos. A05, B07, and B09, as well as through the CRC 1128 (geo-Q) within the Project Nos. A01 and A02. We also acknowledge support from the QUEST-LFS, the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant Nos. DLR 50WM1952 and 50WM1955 (QUANTUS-V-Fallturm), 50WM1642 (PRIMUS-III), 50WM1861 (CAL), 50WP1700 (BECCAL), 50RK1957 (QGYRO), and the Verein Deutscher Ingenieure (VDI) with funds provided by the Federal Ministry of Education and Research (BMBF) under Grant No. VDI 13N14838 (TAIOL). We acknowledge financial support from “Niedersächsisches Vorab” through the “Quantum-and Nano-Metrology (QUANO-MET)” initiative within the project QT3 and through “Förderung von Wissenschaft und Technik in Forschung und Lehre” for the initial funding of research in the new DLR-SI Institute.
PY - 2021/5/5
Y1 - 2021/5/5
N2 - Inertial sensors based on cold atoms have great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity increases with the space-time area enclosed by the interferometer. Here, we introduce twin-lattice atom interferometry exploiting Bose-Einstein condensates of rubidium-87. Our method provides symmetric momentum transfer and large areas offering a perspective for future palm-sized sensor heads with sensitivities on par with present meter-scale Sagnac devices. Our theoretical model of the impact of beam splitters on the spatial coherence is highly instrumental for designing future sensors.
AB - Inertial sensors based on cold atoms have great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity increases with the space-time area enclosed by the interferometer. Here, we introduce twin-lattice atom interferometry exploiting Bose-Einstein condensates of rubidium-87. Our method provides symmetric momentum transfer and large areas offering a perspective for future palm-sized sensor heads with sensitivities on par with present meter-scale Sagnac devices. Our theoretical model of the impact of beam splitters on the spatial coherence is highly instrumental for designing future sensors.
KW - quant-ph
KW - physics.atom-ph
UR - http://www.scopus.com/inward/record.url?scp=85105267130&partnerID=8YFLogxK
U2 - 10.1038/s41467-021-22823-8
DO - 10.1038/s41467-021-22823-8
M3 - Article
VL - 12
JO - Nature Communications
JF - Nature Communications
SN - 2041-1723
IS - 1
M1 - 2544
ER -