Twin-lattice atom interferometry

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Martina Gebbe
  • Jan-Niclas Siemß
  • Matthias Gersemann
  • Hauke Müntinga
  • Sven Herrmann
  • Claus Lämmerzahl
  • Holger Ahlers
  • Naceur Gaaloul
  • Christian Schubert
  • Klemens Hammerer
  • Sven Abend
  • Wolfgang Ertmer
  • Ernst M. Rasel

Externe Organisationen

  • Universität Bremen
  • DLR-Institut für Raumfahrtsysteme
  • DLR-Institut für Satellitengeodäsie und Inertialsensorik
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer2544
FachzeitschriftNature Communications
Jahrgang12
Ausgabenummer1
PublikationsstatusVeröffentlicht - 5 Mai 2021

Abstract

Inertial sensors based on cold atoms have great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity increases with the space-time area enclosed by the interferometer. Here, we introduce twin-lattice atom interferometry exploiting Bose-Einstein condensates of rubidium-87. Our method provides symmetric momentum transfer and large areas offering a perspective for future palm-sized sensor heads with sensitivities on par with present meter-scale Sagnac devices. Our theoretical model of the impact of beam splitters on the spatial coherence is highly instrumental for designing future sensors.

Zitieren

Twin-lattice atom interferometry. / Gebbe, Martina; Siemß, Jan-Niclas; Gersemann, Matthias et al.
in: Nature Communications, Jahrgang 12, Nr. 1, 2544, 05.05.2021.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Gebbe, M, Siemß, J-N, Gersemann, M, Müntinga, H, Herrmann, S, Lämmerzahl, C, Ahlers, H, Gaaloul, N, Schubert, C, Hammerer, K, Abend, S, Ertmer, W & Rasel, EM 2021, 'Twin-lattice atom interferometry', Nature Communications, Jg. 12, Nr. 1, 2544. https://doi.org/10.1038/s41467-021-22823-8
Gebbe, M., Siemß, J.-N., Gersemann, M., Müntinga, H., Herrmann, S., Lämmerzahl, C., Ahlers, H., Gaaloul, N., Schubert, C., Hammerer, K., Abend, S., Ertmer, W., & Rasel, E. M. (2021). Twin-lattice atom interferometry. Nature Communications, 12(1), Artikel 2544. https://doi.org/10.1038/s41467-021-22823-8
Gebbe M, Siemß JN, Gersemann M, Müntinga H, Herrmann S, Lämmerzahl C et al. Twin-lattice atom interferometry. Nature Communications. 2021 Mai 5;12(1):2544. doi: 10.1038/s41467-021-22823-8
Gebbe, Martina ; Siemß, Jan-Niclas ; Gersemann, Matthias et al. / Twin-lattice atom interferometry. in: Nature Communications. 2021 ; Jahrgang 12, Nr. 1.
Download
@article{401a3167acd64dfcae2600a61d85a039,
title = "Twin-lattice atom interferometry",
abstract = "Inertial sensors based on cold atoms have great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity increases with the space-time area enclosed by the interferometer. Here, we introduce twin-lattice atom interferometry exploiting Bose-Einstein condensates of rubidium-87. Our method provides symmetric momentum transfer and large areas offering a perspective for future palm-sized sensor heads with sensitivities on par with present meter-scale Sagnac devices. Our theoretical model of the impact of beam splitters on the spatial coherence is highly instrumental for designing future sensors.",
keywords = "quant-ph, physics.atom-ph",
author = "Martina Gebbe and Jan-Niclas Siem{\ss} and Matthias Gersemann and Hauke M{\"u}ntinga and Sven Herrmann and Claus L{\"a}mmerzahl and Holger Ahlers and Naceur Gaaloul and Christian Schubert and Klemens Hammerer and Sven Abend and Wolfgang Ertmer and Rasel, {Ernst M.}",
note = "Funding Information: We thank E. Giese, A. Friedrich, J. Jenewein, A. Roura, Z. Pagel, M. Jaffe, P. Haslinger, and H. M{\"u}ller for fruitful discussions. This work is funded by the Deutsche For-schungsgemeinschaft (DFG, German Research Foundation) under Germany{\textquoteright}s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967 within research units B02 and B05 and through the CRC 1227 (DQ-mat) within Project Nos. A05, B07, and B09, as well as through the CRC 1128 (geo-Q) within the Project Nos. A01 and A02. We also acknowledge support from the QUEST-LFS, the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant Nos. DLR 50WM1952 and 50WM1955 (QUANTUS-V-Fallturm), 50WM1642 (PRIMUS-III), 50WM1861 (CAL), 50WP1700 (BECCAL), 50RK1957 (QGYRO), and the Verein Deutscher Ingenieure (VDI) with funds provided by the Federal Ministry of Education and Research (BMBF) under Grant No. VDI 13N14838 (TAIOL). We acknowledge financial support from “Nieders{\"a}chsisches Vorab” through the “Quantum-and Nano-Metrology (QUANO-MET)” initiative within the project QT3 and through “F{\"o}rderung von Wissenschaft und Technik in Forschung und Lehre” for the initial funding of research in the new DLR-SI Institute.",
year = "2021",
month = may,
day = "5",
doi = "10.1038/s41467-021-22823-8",
language = "English",
volume = "12",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",

}

Download

TY - JOUR

T1 - Twin-lattice atom interferometry

AU - Gebbe, Martina

AU - Siemß, Jan-Niclas

AU - Gersemann, Matthias

AU - Müntinga, Hauke

AU - Herrmann, Sven

AU - Lämmerzahl, Claus

AU - Ahlers, Holger

AU - Gaaloul, Naceur

AU - Schubert, Christian

AU - Hammerer, Klemens

AU - Abend, Sven

AU - Ertmer, Wolfgang

AU - Rasel, Ernst M.

N1 - Funding Information: We thank E. Giese, A. Friedrich, J. Jenewein, A. Roura, Z. Pagel, M. Jaffe, P. Haslinger, and H. Müller for fruitful discussions. This work is funded by the Deutsche For-schungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967 within research units B02 and B05 and through the CRC 1227 (DQ-mat) within Project Nos. A05, B07, and B09, as well as through the CRC 1128 (geo-Q) within the Project Nos. A01 and A02. We also acknowledge support from the QUEST-LFS, the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant Nos. DLR 50WM1952 and 50WM1955 (QUANTUS-V-Fallturm), 50WM1642 (PRIMUS-III), 50WM1861 (CAL), 50WP1700 (BECCAL), 50RK1957 (QGYRO), and the Verein Deutscher Ingenieure (VDI) with funds provided by the Federal Ministry of Education and Research (BMBF) under Grant No. VDI 13N14838 (TAIOL). We acknowledge financial support from “Niedersächsisches Vorab” through the “Quantum-and Nano-Metrology (QUANO-MET)” initiative within the project QT3 and through “Förderung von Wissenschaft und Technik in Forschung und Lehre” for the initial funding of research in the new DLR-SI Institute.

PY - 2021/5/5

Y1 - 2021/5/5

N2 - Inertial sensors based on cold atoms have great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity increases with the space-time area enclosed by the interferometer. Here, we introduce twin-lattice atom interferometry exploiting Bose-Einstein condensates of rubidium-87. Our method provides symmetric momentum transfer and large areas offering a perspective for future palm-sized sensor heads with sensitivities on par with present meter-scale Sagnac devices. Our theoretical model of the impact of beam splitters on the spatial coherence is highly instrumental for designing future sensors.

AB - Inertial sensors based on cold atoms have great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity increases with the space-time area enclosed by the interferometer. Here, we introduce twin-lattice atom interferometry exploiting Bose-Einstein condensates of rubidium-87. Our method provides symmetric momentum transfer and large areas offering a perspective for future palm-sized sensor heads with sensitivities on par with present meter-scale Sagnac devices. Our theoretical model of the impact of beam splitters on the spatial coherence is highly instrumental for designing future sensors.

KW - quant-ph

KW - physics.atom-ph

UR - http://www.scopus.com/inward/record.url?scp=85105267130&partnerID=8YFLogxK

U2 - 10.1038/s41467-021-22823-8

DO - 10.1038/s41467-021-22823-8

M3 - Article

VL - 12

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

IS - 1

M1 - 2544

ER -

Von denselben Autoren