Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 043236 |
Fachzeitschrift | Physical Review Research |
Jahrgang | 6 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - 4 Dez. 2024 |
Abstract
We present a theoretical model and numerical optimization of double Bragg diffraction, a widely used technique in atom interferometry. We derive an effective two-level-system Hamiltonian based on the Magnus expansion in the so-called quasi-Bragg regime, where most Bragg-pulse atom interferometers operate. Furthermore, we extend the theory to a five-level description to account for Doppler detuning. Using these derived effective Hamiltonians, we investigate the impacts of AC-Stark shift and polarization errors on the double Bragg beam splitter, along with their mitigations through detuning control. Notably, we design a linear detuning sweep that demonstrates robust efficiency exceeding 99.5% against polarization errors up to 8.5%. Moreover, we develop an artificial-intelligence-Aided optimal detuning control protocol, showcasing enhanced robustness against both polarization errors and Doppler effects. This protocol achieves an average efficiency of 99.92% for samples with a finite momentum width of 0.05â kL within an extended polarization error range of up to 10%.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review Research, Jahrgang 6, Nr. 4, 043236, 04.12.2024.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Robust double Bragg diffraction via detuning control
AU - Li, Rui
AU - Martínez-Lahuerta, V. J.
AU - Seckmeyer, S.
AU - Hammerer, Klemens
AU - Gaaloul, Naceur
N1 - Publisher Copyright: © 2024 authors.
PY - 2024/12/4
Y1 - 2024/12/4
N2 - We present a theoretical model and numerical optimization of double Bragg diffraction, a widely used technique in atom interferometry. We derive an effective two-level-system Hamiltonian based on the Magnus expansion in the so-called quasi-Bragg regime, where most Bragg-pulse atom interferometers operate. Furthermore, we extend the theory to a five-level description to account for Doppler detuning. Using these derived effective Hamiltonians, we investigate the impacts of AC-Stark shift and polarization errors on the double Bragg beam splitter, along with their mitigations through detuning control. Notably, we design a linear detuning sweep that demonstrates robust efficiency exceeding 99.5% against polarization errors up to 8.5%. Moreover, we develop an artificial-intelligence-Aided optimal detuning control protocol, showcasing enhanced robustness against both polarization errors and Doppler effects. This protocol achieves an average efficiency of 99.92% for samples with a finite momentum width of 0.05â kL within an extended polarization error range of up to 10%.
AB - We present a theoretical model and numerical optimization of double Bragg diffraction, a widely used technique in atom interferometry. We derive an effective two-level-system Hamiltonian based on the Magnus expansion in the so-called quasi-Bragg regime, where most Bragg-pulse atom interferometers operate. Furthermore, we extend the theory to a five-level description to account for Doppler detuning. Using these derived effective Hamiltonians, we investigate the impacts of AC-Stark shift and polarization errors on the double Bragg beam splitter, along with their mitigations through detuning control. Notably, we design a linear detuning sweep that demonstrates robust efficiency exceeding 99.5% against polarization errors up to 8.5%. Moreover, we develop an artificial-intelligence-Aided optimal detuning control protocol, showcasing enhanced robustness against both polarization errors and Doppler effects. This protocol achieves an average efficiency of 99.92% for samples with a finite momentum width of 0.05â kL within an extended polarization error range of up to 10%.
UR - http://www.scopus.com/inward/record.url?scp=85211059716&partnerID=8YFLogxK
U2 - 10.1103/PhysRevResearch.6.043236
DO - 10.1103/PhysRevResearch.6.043236
M3 - Article
AN - SCOPUS:85211059716
VL - 6
JO - Physical Review Research
JF - Physical Review Research
SN - 2643-1564
IS - 4
M1 - 043236
ER -