Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 8181 |
Fachzeitschrift | Engineering Proceedings |
Jahrgang | 2 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 14 Nov. 2020 |
Veranstaltung | 7th International Electronic Conference on Sensors and Applications - Sciforum.net Dauer: 15 Nov. 2020 → 30 Nov. 2020 |
Abstract
The resolution of commercially available electrocorticography (ECoG) electrodes is limited due to the large electrode spacing and, therefore, allows only a limited identification of the active nerve cell area. This paper describes a novel manufacturing process for neural implants with higher spatial resolution combining micro technological processes and Polydimethylsiloxane (PDMS) as the flexible, biocompatible material. The conductive electrode structure is deposited on a water-soluble transfer substrate by Physical Vapor Deposition (PVD) processes. Subsequently, the structure is contacted. Finally, the transfer to PDMS and dissolution of the transfer substrate takes place. In this way, high-resolution conductive structures can be produced on the PDMS. Transferred gold structures exhibit higher adhesion and conductivity than transferred platinum structures. The adhesion was improved by applying a silica surface modification to the conductive layer prior to transferring. Furthermore, the conductive layer is flexible, conductive up to an elongation of 10%, and resistant to sodium chloride solution, mimicking brain fluids. Using the introduced production process, an ECoG electrode was manufactured and characterized for its functionality in an electrochemical impedance measurement. Furthermore, the electrodes are flexible enough to adapt to different shapes. The transfer process can also be carried out in a three-dimensional mold to produce electrodes tailored to the individual patient.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Maschinenbau
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
- Ingenieurwesen (insg.)
- Wirtschaftsingenieurwesen und Fertigungstechnik
- Ingenieurwesen (insg.)
- Biomedizintechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Engineering Proceedings, Jahrgang 2, Nr. 1, 14.11.2020, S. 8181.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Transfer Printing of Conductive Thin-Films on PDMS with Soluble Substrates for Flexible Biosensors
AU - Hadeler, Steffen
AU - Bengsch, Sebastian
AU - Prediger, Maren
AU - Wurz, Marc
PY - 2020/11/14
Y1 - 2020/11/14
N2 - The resolution of commercially available electrocorticography (ECoG) electrodes is limited due to the large electrode spacing and, therefore, allows only a limited identification of the active nerve cell area. This paper describes a novel manufacturing process for neural implants with higher spatial resolution combining micro technological processes and Polydimethylsiloxane (PDMS) as the flexible, biocompatible material. The conductive electrode structure is deposited on a water-soluble transfer substrate by Physical Vapor Deposition (PVD) processes. Subsequently, the structure is contacted. Finally, the transfer to PDMS and dissolution of the transfer substrate takes place. In this way, high-resolution conductive structures can be produced on the PDMS. Transferred gold structures exhibit higher adhesion and conductivity than transferred platinum structures. The adhesion was improved by applying a silica surface modification to the conductive layer prior to transferring. Furthermore, the conductive layer is flexible, conductive up to an elongation of 10%, and resistant to sodium chloride solution, mimicking brain fluids. Using the introduced production process, an ECoG electrode was manufactured and characterized for its functionality in an electrochemical impedance measurement. Furthermore, the electrodes are flexible enough to adapt to different shapes. The transfer process can also be carried out in a three-dimensional mold to produce electrodes tailored to the individual patient.
AB - The resolution of commercially available electrocorticography (ECoG) electrodes is limited due to the large electrode spacing and, therefore, allows only a limited identification of the active nerve cell area. This paper describes a novel manufacturing process for neural implants with higher spatial resolution combining micro technological processes and Polydimethylsiloxane (PDMS) as the flexible, biocompatible material. The conductive electrode structure is deposited on a water-soluble transfer substrate by Physical Vapor Deposition (PVD) processes. Subsequently, the structure is contacted. Finally, the transfer to PDMS and dissolution of the transfer substrate takes place. In this way, high-resolution conductive structures can be produced on the PDMS. Transferred gold structures exhibit higher adhesion and conductivity than transferred platinum structures. The adhesion was improved by applying a silica surface modification to the conductive layer prior to transferring. Furthermore, the conductive layer is flexible, conductive up to an elongation of 10%, and resistant to sodium chloride solution, mimicking brain fluids. Using the introduced production process, an ECoG electrode was manufactured and characterized for its functionality in an electrochemical impedance measurement. Furthermore, the electrodes are flexible enough to adapt to different shapes. The transfer process can also be carried out in a three-dimensional mold to produce electrodes tailored to the individual patient.
KW - biosensor
KW - ECoG
KW - patient specific
KW - sputtering
KW - Sylgard 184
UR - http://www.scopus.com/inward/record.url?scp=85125205393&partnerID=8YFLogxK
U2 - 10.3390/ecsa-7-08181
DO - 10.3390/ecsa-7-08181
M3 - Conference article
VL - 2
SP - 8181
JO - Engineering Proceedings
JF - Engineering Proceedings
SN - 2673-4591
IS - 1
T2 - 7th International Electronic Conference on Sensors and Applications
Y2 - 15 November 2020 through 30 November 2020
ER -