Technologies for the ELGAR large scale atom interferometer array

Publikation: Arbeitspapier/PreprintPreprint

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
PublikationsstatusElektronisch veröffentlicht (E-Pub) - 8 Juli 2020

Abstract

We proposed the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an array of atom gradiometers aimed at studying space-time and gravitation with the primary goal of observing gravitational waves (GWs) in the infrasound band with a peak strain sensitivity of \(3.3 \times 10^{-22}/\sqrt{\text{Hz}}\) at 1.7 Hz. In this paper we detail the main technological bricks of this large scale detector and emphasis the research pathways to be conducted for its realization. We discuss the site options, atom optics, and source requirements needed to reach the target sensitivity. We then discuss required seismic isolation techniques, Gravity Gradient Noise reduction strategies, and the metrology of various noise couplings to the detector.

Zitieren

Technologies for the ELGAR large scale atom interferometer array. / ELGAR.
2020.

Publikation: Arbeitspapier/PreprintPreprint

Download
@techreport{986e2a5f4be24958af3818959e7275ea,
title = "Technologies for the ELGAR large scale atom interferometer array",
abstract = " We proposed the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an array of atom gradiometers aimed at studying space-time and gravitation with the primary goal of observing gravitational waves (GWs) in the infrasound band with a peak strain sensitivity of \(3.3 \times 10^{-22}/\sqrt{\text{Hz}}\) at 1.7 Hz. In this paper we detail the main technological bricks of this large scale detector and emphasis the research pathways to be conducted for its realization. We discuss the site options, atom optics, and source requirements needed to reach the target sensitivity. We then discuss required seismic isolation techniques, Gravity Gradient Noise reduction strategies, and the metrology of various noise couplings to the detector. ",
keywords = "physics.atom-ph",
author = "ELGAR and B. Canuel and S. Abend and P. Amaro-Seoane and F. Badaracco and Q. Beaufils and A. Bertoldi and K. Bongs and P. Bouyer and C. Braxmaier and W. Chaibi and N. Christensen and F. Fitzek and G. Flouris and N. Gaaloul and S. Gaffet and Alzar, {C. L. Garrido} and R. Geiger and S. Guellati-Khelifa and K. Hammerer and J. Harms and J. Hinderer and M. Holynski and J. Junca and S. Katsanevas and C. Klempt and C. Kozanitis and M. Krutzik and A. Landragin and Roche, {I. L{\`a}zaro} and B. Leykauf and Lien, {Y. -H.} and S. Loriani and S. Merlet and M. Merzougui and M. Nofrarias and P. Papadakos and Santos, {F. Pereira dos} and A. Peters and D. Plexousakis and M. Prevedelli and Rasel, {E. M.} and Y. Rogister and S. Rosat and A. Roura and Sabulsky, {D. O.} and V. Schkolnik and D. Schlippert and C. Schubert and L. Sidorenkov and Siem{\ss}, {J. -N.}",
year = "2020",
month = jul,
day = "8",
language = "English",
type = "WorkingPaper",

}

Download

TY - UNPB

T1 - Technologies for the ELGAR large scale atom interferometer array

AU - ELGAR

AU - Canuel, B.

AU - Abend, S.

AU - Amaro-Seoane, P.

AU - Badaracco, F.

AU - Beaufils, Q.

AU - Bertoldi, A.

AU - Bongs, K.

AU - Bouyer, P.

AU - Braxmaier, C.

AU - Chaibi, W.

AU - Christensen, N.

AU - Fitzek, F.

AU - Flouris, G.

AU - Gaaloul, N.

AU - Gaffet, S.

AU - Alzar, C. L. Garrido

AU - Geiger, R.

AU - Guellati-Khelifa, S.

AU - Hammerer, K.

AU - Harms, J.

AU - Hinderer, J.

AU - Holynski, M.

AU - Junca, J.

AU - Katsanevas, S.

AU - Klempt, C.

AU - Kozanitis, C.

AU - Krutzik, M.

AU - Landragin, A.

AU - Roche, I. Làzaro

AU - Leykauf, B.

AU - Lien, Y. -H.

AU - Loriani, S.

AU - Merlet, S.

AU - Merzougui, M.

AU - Nofrarias, M.

AU - Papadakos, P.

AU - Santos, F. Pereira dos

AU - Peters, A.

AU - Plexousakis, D.

AU - Prevedelli, M.

AU - Rasel, E. M.

AU - Rogister, Y.

AU - Rosat, S.

AU - Roura, A.

AU - Sabulsky, D. O.

AU - Schkolnik, V.

AU - Schlippert, D.

AU - Schubert, C.

AU - Sidorenkov, L.

AU - Siemß, J. -N.

PY - 2020/7/8

Y1 - 2020/7/8

N2 - We proposed the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an array of atom gradiometers aimed at studying space-time and gravitation with the primary goal of observing gravitational waves (GWs) in the infrasound band with a peak strain sensitivity of \(3.3 \times 10^{-22}/\sqrt{\text{Hz}}\) at 1.7 Hz. In this paper we detail the main technological bricks of this large scale detector and emphasis the research pathways to be conducted for its realization. We discuss the site options, atom optics, and source requirements needed to reach the target sensitivity. We then discuss required seismic isolation techniques, Gravity Gradient Noise reduction strategies, and the metrology of various noise couplings to the detector.

AB - We proposed the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an array of atom gradiometers aimed at studying space-time and gravitation with the primary goal of observing gravitational waves (GWs) in the infrasound band with a peak strain sensitivity of \(3.3 \times 10^{-22}/\sqrt{\text{Hz}}\) at 1.7 Hz. In this paper we detail the main technological bricks of this large scale detector and emphasis the research pathways to be conducted for its realization. We discuss the site options, atom optics, and source requirements needed to reach the target sensitivity. We then discuss required seismic isolation techniques, Gravity Gradient Noise reduction strategies, and the metrology of various noise couplings to the detector.

KW - physics.atom-ph

M3 - Preprint

BT - Technologies for the ELGAR large scale atom interferometer array

ER -

Von denselben Autoren