Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 11564-11569 |
Seitenumfang | 6 |
Fachzeitschrift | IFAC-PapersOnLine |
Jahrgang | 56 |
Ausgabenummer | 2 |
Frühes Online-Datum | 22 Nov. 2023 |
Publikationsstatus | Veröffentlicht - 2023 |
Veranstaltung | 22nd IFAC World Congress - Yokohama, Japan Dauer: 9 Juli 2023 → 14 Juli 2023 |
Abstract
This work provides a framework to compute an upper bound on the robust peak-to-peak gain of discrete-time uncertain linear systems using integral quadratic constraints (IQCs). Such bounds are of particular interest in the computation of reachable sets and the ℓ1-norm, as well as when safety-critical constraints need to be satisfied pointwise in time. The use of ρ-hard IQCs with a terminal cost enables us to deal with a wide variety of uncertainty classes, for example, we provide ρ-hard IQCs with a terminal cost for the class of parametric uncertainties. This approach unifies, generalizes, and significantly improves state-of-the-art methods, which is also demonstrated in a numerical example.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Steuerungs- und Systemtechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: IFAC-PapersOnLine, Jahrgang 56, Nr. 2, 2023, S. 11564-11569.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Robust peak-to-peak gain analysis using integral quadratic constraints
AU - Schwenkel, Lukas
AU - Köhler, Johannes
AU - Müller, Matthias A.
AU - Allgöwer, Frank
N1 - Publisher Copyright: Copyright © 2023 The Authors.
PY - 2023
Y1 - 2023
N2 - This work provides a framework to compute an upper bound on the robust peak-to-peak gain of discrete-time uncertain linear systems using integral quadratic constraints (IQCs). Such bounds are of particular interest in the computation of reachable sets and the ℓ1-norm, as well as when safety-critical constraints need to be satisfied pointwise in time. The use of ρ-hard IQCs with a terminal cost enables us to deal with a wide variety of uncertainty classes, for example, we provide ρ-hard IQCs with a terminal cost for the class of parametric uncertainties. This approach unifies, generalizes, and significantly improves state-of-the-art methods, which is also demonstrated in a numerical example.
AB - This work provides a framework to compute an upper bound on the robust peak-to-peak gain of discrete-time uncertain linear systems using integral quadratic constraints (IQCs). Such bounds are of particular interest in the computation of reachable sets and the ℓ1-norm, as well as when safety-critical constraints need to be satisfied pointwise in time. The use of ρ-hard IQCs with a terminal cost enables us to deal with a wide variety of uncertainty classes, for example, we provide ρ-hard IQCs with a terminal cost for the class of parametric uncertainties. This approach unifies, generalizes, and significantly improves state-of-the-art methods, which is also demonstrated in a numerical example.
KW - integral quadratic constraints
KW - peak-to-peak gain
KW - reachable set
KW - Robust control
KW - ℓ-norm
UR - http://www.scopus.com/inward/record.url?scp=85184958493&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2211.09434
DO - 10.48550/arXiv.2211.09434
M3 - Conference article
AN - SCOPUS:85184958493
VL - 56
SP - 11564
EP - 11569
JO - IFAC-PapersOnLine
JF - IFAC-PapersOnLine
IS - 2
T2 - 22nd IFAC World Congress
Y2 - 9 July 2023 through 14 July 2023
ER -