Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 257-263 |
Seitenumfang | 7 |
Fachzeitschrift | IFAC-PapersOnLine |
Jahrgang | 54 |
Ausgabenummer | 6 |
Frühes Online-Datum | 9 Sept. 2021 |
Publikationsstatus | Veröffentlicht - 2021 |
Veranstaltung | 7th IFAC Conference on Nonlinear Model Predictive Control (NMPC 2021) - Bratislava, Slowakei Dauer: 11 Juli 2021 → 14 Juli 2021 Konferenznummer: 7 |
Abstract
We present a model predictive control (MPC) scheme to control linear time-invariant systems using only measured input-output data and no model knowledge. The scheme includes a terminal cost and a terminal set constraint on an extended state containing past input-output values. We provide an explicit design procedure for the corresponding terminal ingredients that only uses measured input-output data. Further, we prove that the MPC scheme based on these terminal ingredients exponentially stabilizes the desired setpoint in closed loop. Finally, we illustrate the advantages over existing data-driven MPC approaches with a numerical example.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Steuerungs- und Systemtechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: IFAC-PapersOnLine, Jahrgang 54, Nr. 6, 2021, S. 257-263.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - On the design of terminal ingredients for data-driven MPC
AU - Berberich, Julian
AU - Köhler, Johannes
AU - Müller, Matthias A.
AU - Allgöwer, Frank
N1 - Conference code: 7
PY - 2021
Y1 - 2021
N2 - We present a model predictive control (MPC) scheme to control linear time-invariant systems using only measured input-output data and no model knowledge. The scheme includes a terminal cost and a terminal set constraint on an extended state containing past input-output values. We provide an explicit design procedure for the corresponding terminal ingredients that only uses measured input-output data. Further, we prove that the MPC scheme based on these terminal ingredients exponentially stabilizes the desired setpoint in closed loop. Finally, we illustrate the advantages over existing data-driven MPC approaches with a numerical example.
AB - We present a model predictive control (MPC) scheme to control linear time-invariant systems using only measured input-output data and no model knowledge. The scheme includes a terminal cost and a terminal set constraint on an extended state containing past input-output values. We provide an explicit design procedure for the corresponding terminal ingredients that only uses measured input-output data. Further, we prove that the MPC scheme based on these terminal ingredients exponentially stabilizes the desired setpoint in closed loop. Finally, we illustrate the advantages over existing data-driven MPC approaches with a numerical example.
UR - http://www.scopus.com/inward/record.url?scp=85117892449&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2101.05573
DO - 10.48550/arXiv.2101.05573
M3 - Conference article
AN - SCOPUS:85117892449
VL - 54
SP - 257
EP - 263
JO - IFAC-PapersOnLine
JF - IFAC-PapersOnLine
SN - 2405-8963
IS - 6
T2 - 7th IFAC Conference on Nonlinear Model Predictive Control (NMPC 2021)
Y2 - 11 July 2021 through 14 July 2021
ER -