Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1 - European Conference |
Herausgeber/-innen | Adélia Sequeira, Ana Silvestre, Svilen S. Valtchev, João Janela |
Herausgeber (Verlag) | Springer Science and Business Media Deutschland GmbH |
Seiten | 313-323 |
Seitenumfang | 11 |
ISBN (elektronisch) | 978-3-031-86173-4 |
ISBN (Print) | 9783031861727 |
Publikationsstatus | Veröffentlicht - 25 Apr. 2025 |
Veranstaltung | European Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2023 - Lisbon, Portugal Dauer: 4 Sept. 2023 → 8 Sept. 2023 |
Publikationsreihe
Name | Lecture Notes in Computational Science and Engineering |
---|---|
Band | 153 LNCSE |
ISSN (Print) | 1439-7358 |
ISSN (elektronisch) | 2197-7100 |
Abstract
We present a monolithic finite element formulation for (nonlinear) fluid-structure interaction in Eulerian coordinates. For the discretization we employ an unfitted finite element method based on inf-sup stable finite elements. So-called ghost penalty terms are used to guarantee the robustness of the approach independently of the way the interface cuts the finite element mesh. The resulting system is solved in a monolithic fashion using Newton’s method. Our developments are tested on a numerical example with fixed interface.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Modellierung und Simulation
- Ingenieurwesen (insg.)
- Allgemeiner Maschinenbau
- Mathematik (insg.)
- Diskrete Mathematik und Kombinatorik
- Mathematik (insg.)
- Steuerung und Optimierung
- Mathematik (insg.)
- Computational Mathematics
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1 - European Conference. Hrsg. / Adélia Sequeira; Ana Silvestre; Svilen S. Valtchev; João Janela. Springer Science and Business Media Deutschland GmbH, 2025. S. 313-323 (Lecture Notes in Computational Science and Engineering; Band 153 LNCSE).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Modeling and Numerical Simulation of Fully Eulerian Fluid-Structure Interaction Using Cut Finite Elements
AU - Frei, Stefan
AU - Knoke, Tobias
AU - Steinbach, Marc C.
AU - Wenske, Anne Kathrin
AU - Wick, Thomas
N1 - Publisher Copyright: © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
PY - 2025/4/25
Y1 - 2025/4/25
N2 - We present a monolithic finite element formulation for (nonlinear) fluid-structure interaction in Eulerian coordinates. For the discretization we employ an unfitted finite element method based on inf-sup stable finite elements. So-called ghost penalty terms are used to guarantee the robustness of the approach independently of the way the interface cuts the finite element mesh. The resulting system is solved in a monolithic fashion using Newton’s method. Our developments are tested on a numerical example with fixed interface.
AB - We present a monolithic finite element formulation for (nonlinear) fluid-structure interaction in Eulerian coordinates. For the discretization we employ an unfitted finite element method based on inf-sup stable finite elements. So-called ghost penalty terms are used to guarantee the robustness of the approach independently of the way the interface cuts the finite element mesh. The resulting system is solved in a monolithic fashion using Newton’s method. Our developments are tested on a numerical example with fixed interface.
KW - math.NA
KW - cs.NA
UR - http://www.scopus.com/inward/record.url?scp=105004252785&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-86173-4_32
DO - 10.1007/978-3-031-86173-4_32
M3 - Conference contribution
SN - 9783031861727
T3 - Lecture Notes in Computational Science and Engineering
SP - 313
EP - 323
BT - Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1 - European Conference
A2 - Sequeira, Adélia
A2 - Silvestre, Ana
A2 - Valtchev, Svilen S.
A2 - Janela, João
PB - Springer Science and Business Media Deutschland GmbH
T2 - European Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2023
Y2 - 4 September 2023 through 8 September 2023
ER -