pff-oc: A space–time phase-field fracture optimal control framework

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer100734
FachzeitschriftSoftware Impacts
Jahrgang23
Frühes Online-Datum2 Jan. 2025
PublikationsstatusVeröffentlicht - März 2025

Abstract

This codebase is developed to address optimal control problems in phase-field fracture, aiming to achieve a desired fracture pattern in brittle materials through the application of external forces. Built alongside our recent work (Khimin et al., 2022), this framework provides an efficient and precise approach for simulating space–time phase-field optimal control problems. In this setup, the fracture is controlled via Neumann boundary conditions, with the cost functional designed to minimize the difference between the actual and desired fracture states. The implementation relies on the open-source libraries DOpElib (Goll et al., 2017) and deal.II (Arndt et al.

ASJC Scopus Sachgebiete

Zitieren

pff-oc: A space–time phase-field fracture optimal control framework. / Khimin, Denis; Steinbach, Marc Christian; Wick, Thomas.
in: Software Impacts, Jahrgang 23, 100734, 03.2025.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Khimin D, Steinbach MC, Wick T. pff-oc: A space–time phase-field fracture optimal control framework. Software Impacts. 2025 Mär;23:100734. Epub 2025 Jan 2. doi: 10.1016/j.simpa.2024.100734
Khimin, Denis ; Steinbach, Marc Christian ; Wick, Thomas. / pff-oc : A space–time phase-field fracture optimal control framework. in: Software Impacts. 2025 ; Jahrgang 23.
Download
@article{1c228b0ae25743f0af4fc790f948d7b1,
title = "pff-oc: A space–time phase-field fracture optimal control framework",
abstract = "This codebase is developed to address optimal control problems in phase-field fracture, aiming to achieve a desired fracture pattern in brittle materials through the application of external forces. Built alongside our recent work (Khimin et al., 2022), this framework provides an efficient and precise approach for simulating space–time phase-field optimal control problems. In this setup, the fracture is controlled via Neumann boundary conditions, with the cost functional designed to minimize the difference between the actual and desired fracture states. The implementation relies on the open-source libraries DOpElib (Goll et al., 2017) and deal.II (Arndt et al.",
keywords = "Applied mathematics, C++, deal.II, DOpElib, Optimal control, Phase-field fracture, Space–time",
author = "Denis Khimin and Steinbach, {Marc Christian} and Thomas Wick",
note = "Publisher Copyright: {\textcopyright} 2024 The Author(s)",
year = "2025",
month = mar,
doi = "10.1016/j.simpa.2024.100734",
language = "English",
volume = "23",

}

Download

TY - JOUR

T1 - pff-oc

T2 - A space–time phase-field fracture optimal control framework

AU - Khimin, Denis

AU - Steinbach, Marc Christian

AU - Wick, Thomas

N1 - Publisher Copyright: © 2024 The Author(s)

PY - 2025/3

Y1 - 2025/3

N2 - This codebase is developed to address optimal control problems in phase-field fracture, aiming to achieve a desired fracture pattern in brittle materials through the application of external forces. Built alongside our recent work (Khimin et al., 2022), this framework provides an efficient and precise approach for simulating space–time phase-field optimal control problems. In this setup, the fracture is controlled via Neumann boundary conditions, with the cost functional designed to minimize the difference between the actual and desired fracture states. The implementation relies on the open-source libraries DOpElib (Goll et al., 2017) and deal.II (Arndt et al.

AB - This codebase is developed to address optimal control problems in phase-field fracture, aiming to achieve a desired fracture pattern in brittle materials through the application of external forces. Built alongside our recent work (Khimin et al., 2022), this framework provides an efficient and precise approach for simulating space–time phase-field optimal control problems. In this setup, the fracture is controlled via Neumann boundary conditions, with the cost functional designed to minimize the difference between the actual and desired fracture states. The implementation relies on the open-source libraries DOpElib (Goll et al., 2017) and deal.II (Arndt et al.

KW - Applied mathematics

KW - C++

KW - deal.II

KW - DOpElib

KW - Optimal control

KW - Phase-field fracture

KW - Space–time

UR - http://www.scopus.com/inward/record.url?scp=85214347070&partnerID=8YFLogxK

U2 - 10.1016/j.simpa.2024.100734

DO - 10.1016/j.simpa.2024.100734

M3 - Article

AN - SCOPUS:85214347070

VL - 23

JO - Software Impacts

JF - Software Impacts

M1 - 100734

ER -