Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC) |
Seiten | 5798-5804 |
Seitenumfang | 7 |
ISBN (elektronisch) | 9798350399462 |
Publikationsstatus | Veröffentlicht - 2023 |
Publikationsreihe
Name | IEEE Conference on Intelligent Transportation Systems |
---|---|
ISSN (Print) | 2153-0009 |
ISSN (elektronisch) | 2153-0017 |
Abstract
increasing due to the fact that the GNSS sensor is the only one providing absolute positioning information. The main error source for GNSS-based positioning in urban environments is multipath and non-line-of-sight (NLOS) signal reception caused by high-raised buildings in the vicinity of the antenna, leading to ranging errors which can reach up to several hundreds of meters. In kinematic urban GNSS applications, the main error sources have a complex spatio-temporal behaviour. Hence, many studies focus on multipath mitigation methods based on ray tracing algorithms in conjunction with 3D city models.
Performing epoch-wise ray tracing to exclude NLOS satellites is computationally intensive and requires special computation techniques for real-time applicability. In this contribution, we generate a fully populated GNSS Feature Map based on collected real GNSS data containing information on potential
pseudorange errors. This map is integrated into a GNSS real-time kinematic (RTK) positioning algorithm to adapt the weighting model and consequently improving the positioning solution without the need of high computation load and external city model information. By applying our proposed approach, root mean squared errors of horizontal position deviations are improved by 90.5 % and the maximum horizontal positioning error is reduced from 2.45 m to 0.52 m. The increased accuracy of the positioning solution also leads to more nominal operation modes (95.8 % compared to 77.4 %) and misleading
information and hazardous operations epochs are minimized.
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC). 2023. S. 5798-5804 (IEEE Conference on Intelligent Transportation Systems).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - GNSS Feature Map Aided RTK Positioning in Urban Trenches
AU - Ruwisch, Fabian
AU - Schön, Steffen
N1 - Funding Information: *The results were obtained in the project KOMET, which is managed by TÜV-Rheinland (PT-TÜV) under the grant 19A20002C and is funded by the Federal Ministry for Economic Affairs and Climate Action (BMWK), based on a resolution of the German Bundestag.
PY - 2023
Y1 - 2023
N2 - Accurate localization in urban environments plays a crucial role in many applications and emerging technologies, such as autonomous driving or pedestrian navigation. The demand for high accuracy and high integrity positioning models using the Global Navigation Satellite System (GNSS) sensor is increasing due to the fact that the GNSS sensor is the only one providing absolute positioning information. The main error source for GNSS-based positioning in urban environments is multipath and non-line-of-sight (NLOS) signal reception caused by high-raised buildings in the vicinity of the antenna, leading to ranging errors which can reach up to several hundreds of meters. In kinematic urban GNSS applications, the main error sources have a complex spatio-temporal behaviour. Hence, many studies focus on multipath mitigation methods based on ray tracing algorithms in conjunction with 3D city models. Performing epoch-wise ray tracing to exclude NLOS satellites is computationally intensive and requires special computation techniques for real-time applicability. In this contribution, we generate a fully populated GNSS Feature Map based on collected real GNSS data containing information on potential pseudorange errors. This map is integrated into a GNSS real-time kinematic (RTK) positioning algorithm to adapt the weighting model and consequently improving the positioning solution without the need of high computation load and external city model information. By applying our proposed approach, root mean squared errors of horizontal position deviations are improved by 90.5 % and the maximum horizontal position error is reduced from 2.45 m to 0.52 m. The increased accuracy of the positioning solution also leads to more nominal operation modes (95.8 % compared to 77.4 %) and misleading information and hazardous operations epochs are minimized.
AB - Accurate localization in urban environments plays a crucial role in many applications and emerging technologies, such as autonomous driving or pedestrian navigation. The demand for high accuracy and high integrity positioning models using the Global Navigation Satellite System (GNSS) sensor is increasing due to the fact that the GNSS sensor is the only one providing absolute positioning information. The main error source for GNSS-based positioning in urban environments is multipath and non-line-of-sight (NLOS) signal reception caused by high-raised buildings in the vicinity of the antenna, leading to ranging errors which can reach up to several hundreds of meters. In kinematic urban GNSS applications, the main error sources have a complex spatio-temporal behaviour. Hence, many studies focus on multipath mitigation methods based on ray tracing algorithms in conjunction with 3D city models. Performing epoch-wise ray tracing to exclude NLOS satellites is computationally intensive and requires special computation techniques for real-time applicability. In this contribution, we generate a fully populated GNSS Feature Map based on collected real GNSS data containing information on potential pseudorange errors. This map is integrated into a GNSS real-time kinematic (RTK) positioning algorithm to adapt the weighting model and consequently improving the positioning solution without the need of high computation load and external city model information. By applying our proposed approach, root mean squared errors of horizontal position deviations are improved by 90.5 % and the maximum horizontal position error is reduced from 2.45 m to 0.52 m. The increased accuracy of the positioning solution also leads to more nominal operation modes (95.8 % compared to 77.4 %) and misleading information and hazardous operations epochs are minimized.
UR - http://www.scopus.com/inward/record.url?scp=85186522183&partnerID=8YFLogxK
U2 - 10.1109/itsc57777.2023.10422176
DO - 10.1109/itsc57777.2023.10422176
M3 - Conference contribution
SN - 2153-0009
T3 - IEEE Conference on Intelligent Transportation Systems
SP - 5798
EP - 5804
BT - 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC)
ER -