Loading [MathJax]/extensions/tex2jax.js

Efficient diagnostics of complex mechanical systems

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Details

OriginalspracheEnglisch
QualifikationDoktor der Ingenieurwissenschaften
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades27 Aug. 2024
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 20 Sept. 2024

Abstract

Die Diagnose von Fehlern und unsicheren Betriebszuständen in Maschinen und Bauwerken erfordert häufig eine inverse Modellierung, bei der ein Berechnungsmodell zusammen mit Daten verwendet wird, um den aktuellen Systemzustand zu ermitteln. Um ungenaue Modelle und Sensorrauschen in den Griff zu bekommen, können stochastische Modelle benutzt werden. Dies ermöglicht die Quantifizierung von Unsicherheiten sowohl in Modellen als auch in Messungen und bietet einen robusteren Ansatz für die Fehlerdiagnose. Durch die Einbeziehung von Wahrscheinlichkeitsverteilungen ist es möglich, eine Reihe möglicher Ergebnisse zu erfassen und deren Wahrscheinlichkeit zu bewerten, was tiefere Einblicke in das Systemverhalten ermöglicht. Inverse Probleme sind häufig schlecht konditioniert, was bedeutet, dass die Lösungen möglicherweise nicht eindeutig oder stabil sind, was zu erheblichen Unsicherheiten in den Ergebnissen führt. Durch die Nutzung stochastischer Methoden wird eine differenziertere Interpretation der Daten ermöglicht. Dieser Ansatz erleichtert die Bewertung mehrerer Modelle und Zustände und bietet Methodiken zur Bewertung ihrer relativen Wahrscheinlichkeiten und zur Ermittlung der wahrscheinlichsten Szenarien. Diese Arbeit konzentriert sich auf die Entwicklung effizienter Algorithmen für die inverse Modellierung in strukturellen und dynamischen Systemen, insbesondere für die Aktualisierung von Parametern. Traditionelle Ansätze zur Lösung inverser Probleme in diesen Bereichen stützen sich häufig auf Markov-Chain-Monte-Carlo-Methoden (MCMC) in einem Bayes'schen Rahmen. Obwohl diese Methoden effektiv sind, können sie aufgrund der hohen Anzahl von Modellaufrufen und verworfenen Stichproben rechenintensiv sein. Jüngste Fortschritte im Bereich des optimalen Transports bieten eine effizientere Möglichkeit, Bayessche inverse Probleme zu lösen, indem ein variationeller Ansatz verwendet wird. Bei diesem Ansatz werden sog. Transport Maps verwendet, um eine Kopplung zwischen zwei Wahrscheinlichkeitsverteilungen herzustellen, die eine direkte Abbildung von einer einfachen, leicht auszuwertenden Verteilung auf die komplexe Posterior-Verteilung ermöglicht, die bei der Bayes'schen Aktualisierung verwendet wird. Die Abbildung basiert auf speziellen Polynomen und wird durch Lösen eines Optimierungsproblems gefunden. Die Methode ist jedoch flexibel, so dass auch andere Funktionen, wie z. B. neuronale Netze, als Grundlage für die Abbildung verwendet werden können. In dieser Arbeit wird eine allgemeine Formulierung für die Lösung von Problemen der strukturellen Zustandsüberwachung vorgestellt und die Vor- und Nachteile der Verwendung von Transport Maps in diesem Zusammenhang aufgezeigt. Darüber hinaus werden dieselben Methoden auf die Aktualisierung von Parametern in dynamischen Systemen angewandt, wobei eine Alternative zu traditionellen Filterverfahren wie Kalman-Filter oder Partikelfilter vorgestellt wird. Die Ergebnisse zeigen, dass die Verwendung von auf optimalem Transport basierenden Methoden zu einer erheblichen Verringerung des Rechenaufwands führen kann, während die Genauigkeit des Bayes'schen Parameteraktualisierungsprozesses erhalten bleibt. Zur Unterstützung künftiger Forschungen und Experimente sowie zur Validierung von entwickelten Algorithmen wurde ein Open-Source-Framework für Schwingungsexperimente entwickelt. Dieses Open-Source-Framework bietet eine kostengünstige Lösung für die Erforschung dynamischen Verhaltens technischer Systeme. Das Framework ist so konzipiert, dass es generische Signale, wie etwa harmonische Schwingungen, zufällige Erregungen und Erdbebenaufzeichnungen, abbilden kann, und ist daher vielseitig und für eine breite Palette von Anwendungen geeignet. Durch die Verwendung von leicht erhältlichen Standardkomponenten lassen sich die Kosten im Vergleich zu herkömmlichen Schwingungsprüfgeräten erheblich senken. Diese Zugänglichkeit der Komponenten und der Software macht ihn zu einer ausgezeichneten Wahl für kleinere Forschungsgruppen und Bildungseinrichtungen, die zuverlässige und dennoch erschwingliche Versuchswerkzeuge benötigen.

Zitieren

Efficient diagnostics of complex mechanical systems. / Grashorn, Jan.
Hannover, 2024. 132 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Grashorn, J 2024, 'Efficient diagnostics of complex mechanical systems', Doktor der Ingenieurwissenschaften, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/17989
Grashorn, J. (2024). Efficient diagnostics of complex mechanical systems. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/17989
Grashorn J. Efficient diagnostics of complex mechanical systems. Hannover, 2024. 132 S. doi: 10.15488/17989
Grashorn, Jan. / Efficient diagnostics of complex mechanical systems. Hannover, 2024. 132 S.
Download
@phdthesis{6dd393fe9c0b45aa842b62bda59af75a,
title = "Efficient diagnostics of complex mechanical systems",
abstract = "Diagnosing faults and unsafe operation conditions in machines and structures often involves inverse modeling, where a computational model is used together with data to infer the current system state. To tackle imprecise models and sensor noise, a stochastic framework can be adapted here. This allows for the quantification of uncertainties in both models and measurements, offering a more robust approach to fault diagnosis. By incorporating probability distributions, it is possible to capture a range of possible outcomes and assess their likelihood, providing deeper insights into system behavior. Inverse problems are frequently ill-posed, meaning that solutions may not be unique or stable, leading to significant uncertainties in the results. By leveraging a stochastic framework, it is possible to introduce probabilistic methods into the modeling process, allowing for a more nuanced interpretation of the data. This approach facilitates the evaluation of multiple models and states, providing a mechanism to assess their relative probabilities and identify the most likely scenarios. This work focuses on developing efficient algorithms for inverse modeling in structural and dynamical engineering systems, specifically for parameter updating. Traditional approaches to solving inverse problems in these fields often rely on Markov chain Monte Carlo (MCMC) methods within a Bayesian framework. Although effective, these methods can be computationally expensive due to the high number of model evaluations and rejected samples. Recent advancements in the field of optimal transport offer a more efficient way to tackle Bayesian inverse problems by employing a variational approach. This approach utilizes transport maps to establish a coupling between two probability distributions, enabling a direct mapping from a simple, easy-to-evaluate distribution to the complex posterior distribution used in Bayesian updating. The mapping is derived through optimization, and in this work, polynomial-based transport maps are used. However, the method is flexible, allowing for other functions such as neural networks to be used as the basis for the mapping. The thesis presents a general formulation for solving structural health monitoring problems, illustrating the advantages and disadvantages of using transport maps in this context. Moreover, the same framework is applied to parameter updating in dynamical systems, presenting an alternative to traditional filtering methods like Kalman filters or particle filters. The results demonstrate that the use of optimal transport-based methods can lead to significant reductions in computational effort while maintaining accuracy in the Bayesian parameter updating process. To support future research and experimentation, and to validate developed algorithms, an open-source framework for vibration experiments has been developed. This open-source framework offers a cost-effective solution for conducting research on dynamic behavior in engineering systems. Designed to accommodate generic signals, such as harmonic vibrations, random excitations and earthquake recordings, the framework is versatile and suitable for a wide range of applications. By using standard, readily available components, the setup significantly reduces costs compared to traditional vibration testing equipment. This accessibility makes it an excellent choice for smaller research groups and educational institutions that require reliable yet affordable experimental tools.",
author = "Jan Grashorn",
year = "2024",
month = sep,
day = "20",
doi = "10.15488/17989",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Efficient diagnostics of complex mechanical systems

AU - Grashorn, Jan

PY - 2024/9/20

Y1 - 2024/9/20

N2 - Diagnosing faults and unsafe operation conditions in machines and structures often involves inverse modeling, where a computational model is used together with data to infer the current system state. To tackle imprecise models and sensor noise, a stochastic framework can be adapted here. This allows for the quantification of uncertainties in both models and measurements, offering a more robust approach to fault diagnosis. By incorporating probability distributions, it is possible to capture a range of possible outcomes and assess their likelihood, providing deeper insights into system behavior. Inverse problems are frequently ill-posed, meaning that solutions may not be unique or stable, leading to significant uncertainties in the results. By leveraging a stochastic framework, it is possible to introduce probabilistic methods into the modeling process, allowing for a more nuanced interpretation of the data. This approach facilitates the evaluation of multiple models and states, providing a mechanism to assess their relative probabilities and identify the most likely scenarios. This work focuses on developing efficient algorithms for inverse modeling in structural and dynamical engineering systems, specifically for parameter updating. Traditional approaches to solving inverse problems in these fields often rely on Markov chain Monte Carlo (MCMC) methods within a Bayesian framework. Although effective, these methods can be computationally expensive due to the high number of model evaluations and rejected samples. Recent advancements in the field of optimal transport offer a more efficient way to tackle Bayesian inverse problems by employing a variational approach. This approach utilizes transport maps to establish a coupling between two probability distributions, enabling a direct mapping from a simple, easy-to-evaluate distribution to the complex posterior distribution used in Bayesian updating. The mapping is derived through optimization, and in this work, polynomial-based transport maps are used. However, the method is flexible, allowing for other functions such as neural networks to be used as the basis for the mapping. The thesis presents a general formulation for solving structural health monitoring problems, illustrating the advantages and disadvantages of using transport maps in this context. Moreover, the same framework is applied to parameter updating in dynamical systems, presenting an alternative to traditional filtering methods like Kalman filters or particle filters. The results demonstrate that the use of optimal transport-based methods can lead to significant reductions in computational effort while maintaining accuracy in the Bayesian parameter updating process. To support future research and experimentation, and to validate developed algorithms, an open-source framework for vibration experiments has been developed. This open-source framework offers a cost-effective solution for conducting research on dynamic behavior in engineering systems. Designed to accommodate generic signals, such as harmonic vibrations, random excitations and earthquake recordings, the framework is versatile and suitable for a wide range of applications. By using standard, readily available components, the setup significantly reduces costs compared to traditional vibration testing equipment. This accessibility makes it an excellent choice for smaller research groups and educational institutions that require reliable yet affordable experimental tools.

AB - Diagnosing faults and unsafe operation conditions in machines and structures often involves inverse modeling, where a computational model is used together with data to infer the current system state. To tackle imprecise models and sensor noise, a stochastic framework can be adapted here. This allows for the quantification of uncertainties in both models and measurements, offering a more robust approach to fault diagnosis. By incorporating probability distributions, it is possible to capture a range of possible outcomes and assess their likelihood, providing deeper insights into system behavior. Inverse problems are frequently ill-posed, meaning that solutions may not be unique or stable, leading to significant uncertainties in the results. By leveraging a stochastic framework, it is possible to introduce probabilistic methods into the modeling process, allowing for a more nuanced interpretation of the data. This approach facilitates the evaluation of multiple models and states, providing a mechanism to assess their relative probabilities and identify the most likely scenarios. This work focuses on developing efficient algorithms for inverse modeling in structural and dynamical engineering systems, specifically for parameter updating. Traditional approaches to solving inverse problems in these fields often rely on Markov chain Monte Carlo (MCMC) methods within a Bayesian framework. Although effective, these methods can be computationally expensive due to the high number of model evaluations and rejected samples. Recent advancements in the field of optimal transport offer a more efficient way to tackle Bayesian inverse problems by employing a variational approach. This approach utilizes transport maps to establish a coupling between two probability distributions, enabling a direct mapping from a simple, easy-to-evaluate distribution to the complex posterior distribution used in Bayesian updating. The mapping is derived through optimization, and in this work, polynomial-based transport maps are used. However, the method is flexible, allowing for other functions such as neural networks to be used as the basis for the mapping. The thesis presents a general formulation for solving structural health monitoring problems, illustrating the advantages and disadvantages of using transport maps in this context. Moreover, the same framework is applied to parameter updating in dynamical systems, presenting an alternative to traditional filtering methods like Kalman filters or particle filters. The results demonstrate that the use of optimal transport-based methods can lead to significant reductions in computational effort while maintaining accuracy in the Bayesian parameter updating process. To support future research and experimentation, and to validate developed algorithms, an open-source framework for vibration experiments has been developed. This open-source framework offers a cost-effective solution for conducting research on dynamic behavior in engineering systems. Designed to accommodate generic signals, such as harmonic vibrations, random excitations and earthquake recordings, the framework is versatile and suitable for a wide range of applications. By using standard, readily available components, the setup significantly reduces costs compared to traditional vibration testing equipment. This accessibility makes it an excellent choice for smaller research groups and educational institutions that require reliable yet affordable experimental tools.

U2 - 10.15488/17989

DO - 10.15488/17989

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren