Loading [MathJax]/extensions/tex2jax.js

Effect of SSI on vibration control of structures with tuned vibration absorbers

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Externe Organisationen

  • University of Iceland
  • Universität Herat

Details

OriginalspracheEnglisch
Aufsatznummer7463031
FachzeitschriftShock and vibration
Jahrgang2019
PublikationsstatusVeröffentlicht - 2019
Extern publiziertJa

Abstract

This paper investigates the effect of considering soil-structure interaction (SSI) in seismic responses of reinforced concrete (RC) chimneys installed by distributed tuned vibration absorbers vertically (d-MTVAs). A multimode control approach is used to design the d-MTVAs. Two-dimensional (2D) RC chimney is the assembly of beam elements. Frequency-independent constants for the springs and dashpots are used for modeling the raft and the surrounding soil. The equations of motion for nonclassically damped systems are derived and solved using Newmark's method. The effectiveness of the d-MTVAs is weighed against the case of single tuned vibration absorber (STVA), d-MTVAs suppressing the first modal responses (d-MTVAs-1), and randomly distributed MTVAs (ad-MTVAs). Additionally, parametric studies are conducted for varying mass and damping ratios in the STVA, d-MTVAs-1, ad-MTVAs, and d-MTVAs. In order to show the efficiency in the STVA, d-MTVAs-1, ad-MTVAs, and d-MTVAs cases, responses (displacement and acceleration) at top of the RC chimney while subjected to different real earthquake excitations are computed. It is concluded that the STVA, d-MTVAs-1, ad-MTVAs, and d-MTVAs are effective in response mitigation of the RC chimney; however, d-MTVAs are more efficient while considering equal total mass of the TVA(s). Moreover, the soil type significantly influenced the design parameters of the STVA/d-MTVAs-1/ad-MTVAs/d-MTVAs and seismic response of the RC chimney.

ASJC Scopus Sachgebiete

Zitieren

Effect of SSI on vibration control of structures with tuned vibration absorbers. / Elias, Said.
in: Shock and vibration, Jahrgang 2019, 7463031, 2019.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{9dda8c39acf64219b3f9d63b06ceaece,
title = "Effect of SSI on vibration control of structures with tuned vibration absorbers",
abstract = "This paper investigates the effect of considering soil-structure interaction (SSI) in seismic responses of reinforced concrete (RC) chimneys installed by distributed tuned vibration absorbers vertically (d-MTVAs). A multimode control approach is used to design the d-MTVAs. Two-dimensional (2D) RC chimney is the assembly of beam elements. Frequency-independent constants for the springs and dashpots are used for modeling the raft and the surrounding soil. The equations of motion for nonclassically damped systems are derived and solved using Newmark's method. The effectiveness of the d-MTVAs is weighed against the case of single tuned vibration absorber (STVA), d-MTVAs suppressing the first modal responses (d-MTVAs-1), and randomly distributed MTVAs (ad-MTVAs). Additionally, parametric studies are conducted for varying mass and damping ratios in the STVA, d-MTVAs-1, ad-MTVAs, and d-MTVAs. In order to show the efficiency in the STVA, d-MTVAs-1, ad-MTVAs, and d-MTVAs cases, responses (displacement and acceleration) at top of the RC chimney while subjected to different real earthquake excitations are computed. It is concluded that the STVA, d-MTVAs-1, ad-MTVAs, and d-MTVAs are effective in response mitigation of the RC chimney; however, d-MTVAs are more efficient while considering equal total mass of the TVA(s). Moreover, the soil type significantly influenced the design parameters of the STVA/d-MTVAs-1/ad-MTVAs/d-MTVAs and seismic response of the RC chimney.",
author = "Said Elias",
note = "Publisher Copyright: Copyright {\textcopyright} 2019 Said Elias.",
year = "2019",
doi = "10.1155/2019/7463031",
language = "English",
volume = "2019",
journal = "Shock and vibration",
issn = "1070-9622",
publisher = "John Wiley and Sons Ltd",

}

Download

TY - JOUR

T1 - Effect of SSI on vibration control of structures with tuned vibration absorbers

AU - Elias, Said

N1 - Publisher Copyright: Copyright © 2019 Said Elias.

PY - 2019

Y1 - 2019

N2 - This paper investigates the effect of considering soil-structure interaction (SSI) in seismic responses of reinforced concrete (RC) chimneys installed by distributed tuned vibration absorbers vertically (d-MTVAs). A multimode control approach is used to design the d-MTVAs. Two-dimensional (2D) RC chimney is the assembly of beam elements. Frequency-independent constants for the springs and dashpots are used for modeling the raft and the surrounding soil. The equations of motion for nonclassically damped systems are derived and solved using Newmark's method. The effectiveness of the d-MTVAs is weighed against the case of single tuned vibration absorber (STVA), d-MTVAs suppressing the first modal responses (d-MTVAs-1), and randomly distributed MTVAs (ad-MTVAs). Additionally, parametric studies are conducted for varying mass and damping ratios in the STVA, d-MTVAs-1, ad-MTVAs, and d-MTVAs. In order to show the efficiency in the STVA, d-MTVAs-1, ad-MTVAs, and d-MTVAs cases, responses (displacement and acceleration) at top of the RC chimney while subjected to different real earthquake excitations are computed. It is concluded that the STVA, d-MTVAs-1, ad-MTVAs, and d-MTVAs are effective in response mitigation of the RC chimney; however, d-MTVAs are more efficient while considering equal total mass of the TVA(s). Moreover, the soil type significantly influenced the design parameters of the STVA/d-MTVAs-1/ad-MTVAs/d-MTVAs and seismic response of the RC chimney.

AB - This paper investigates the effect of considering soil-structure interaction (SSI) in seismic responses of reinforced concrete (RC) chimneys installed by distributed tuned vibration absorbers vertically (d-MTVAs). A multimode control approach is used to design the d-MTVAs. Two-dimensional (2D) RC chimney is the assembly of beam elements. Frequency-independent constants for the springs and dashpots are used for modeling the raft and the surrounding soil. The equations of motion for nonclassically damped systems are derived and solved using Newmark's method. The effectiveness of the d-MTVAs is weighed against the case of single tuned vibration absorber (STVA), d-MTVAs suppressing the first modal responses (d-MTVAs-1), and randomly distributed MTVAs (ad-MTVAs). Additionally, parametric studies are conducted for varying mass and damping ratios in the STVA, d-MTVAs-1, ad-MTVAs, and d-MTVAs. In order to show the efficiency in the STVA, d-MTVAs-1, ad-MTVAs, and d-MTVAs cases, responses (displacement and acceleration) at top of the RC chimney while subjected to different real earthquake excitations are computed. It is concluded that the STVA, d-MTVAs-1, ad-MTVAs, and d-MTVAs are effective in response mitigation of the RC chimney; however, d-MTVAs are more efficient while considering equal total mass of the TVA(s). Moreover, the soil type significantly influenced the design parameters of the STVA/d-MTVAs-1/ad-MTVAs/d-MTVAs and seismic response of the RC chimney.

UR - http://www.scopus.com/inward/record.url?scp=85060604229&partnerID=8YFLogxK

U2 - 10.1155/2019/7463031

DO - 10.1155/2019/7463031

M3 - Article

AN - SCOPUS:85060604229

VL - 2019

JO - Shock and vibration

JF - Shock and vibration

SN - 1070-9622

M1 - 7463031

ER -

Von denselben Autoren