Data-driven Nonlinear Predictive Control for Feedback Linearizable Systems

Publikation: Beitrag in FachzeitschriftKonferenzaufsatz in FachzeitschriftForschungPeer-Review

Autoren

Organisationseinheiten

Externe Organisationen

  • Universität Stuttgart
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)617-624
Seitenumfang8
FachzeitschriftIFAC-PapersOnLine
Jahrgang56
Ausgabenummer2
Frühes Online-Datum22 Nov. 2023
PublikationsstatusVeröffentlicht - 2023
VeranstaltungIFAC World Congress 2023 - Pacific Convention Plaza Yokohama, Yokohama, Japan
Dauer: 9 Juli 202314 Juli 2023

Abstract

We present a data-driven nonlinear predictive control approach for the class of discrete-time multi-input multi-output feedback linearizable nonlinear systems. The scheme uses a non-parametric predictive model based only on input and noisy output data along with a set of basis functions that approximate the unknown nonlinearities. Despite the noisy output data as well as the mismatch caused by the use of basis functions, we show that the proposed multi-step robust data-driven nonlinear predictive control scheme is recursively feasible and renders the closed-loop system practically exponentially stable. We illustrate our results on a model of a fully-actuated double inverted pendulum.

ASJC Scopus Sachgebiete

Zitieren

Data-driven Nonlinear Predictive Control for Feedback Linearizable Systems. / Alsalti, Mohammad Salahaldeen Ahmad; Lopez Mejia, Victor Gabriel; Berberich, Julian et al.
in: IFAC-PapersOnLine, Jahrgang 56, Nr. 2, 2023, S. 617-624.

Publikation: Beitrag in FachzeitschriftKonferenzaufsatz in FachzeitschriftForschungPeer-Review

Alsalti, MSA, Lopez Mejia, VG, Berberich, J, Allgöwer, F & Müller, MA 2023, 'Data-driven Nonlinear Predictive Control for Feedback Linearizable Systems', IFAC-PapersOnLine, Jg. 56, Nr. 2, S. 617-624. https://doi.org/10.1016/j.ifacol.2023.10.1636
Alsalti MSA, Lopez Mejia VG, Berberich J, Allgöwer F, Müller MA. Data-driven Nonlinear Predictive Control for Feedback Linearizable Systems. IFAC-PapersOnLine. 2023;56(2):617-624. Epub 2023 Nov 22. doi: 10.1016/j.ifacol.2023.10.1636
Alsalti, Mohammad Salahaldeen Ahmad ; Lopez Mejia, Victor Gabriel ; Berberich, Julian et al. / Data-driven Nonlinear Predictive Control for Feedback Linearizable Systems. in: IFAC-PapersOnLine. 2023 ; Jahrgang 56, Nr. 2. S. 617-624.
Download
@article{fd9e8843df9d4e81ba8c2b1e80a76635,
title = "Data-driven Nonlinear Predictive Control for Feedback Linearizable Systems",
abstract = "We present a data-driven nonlinear predictive control approach for the class of discrete-time multi-input multi-output feedback linearizable nonlinear systems. The scheme uses a non-parametric predictive model based only on input and noisy output data along with a set of basis functions that approximate the unknown nonlinearities. Despite the noisy output data as well as the mismatch caused by the use of basis functions, we show that the proposed multi-step robust data-driven nonlinear predictive control scheme is recursively feasible and renders the closed-loop system practically exponentially stable. We illustrate our results on a model of a fully-actuated double inverted pendulum.",
keywords = "Data-driven predictive control, Data-based control, Feedback linearization, Nonlinear predictive control",
author = "Alsalti, {Mohammad Salahaldeen Ahmad} and {Lopez Mejia}, {Victor Gabriel} and Julian Berberich and Frank Allg{\"o}wer and M{\"u}ller, {Matthias A.}",
note = "Publisher Copyright: Copyright {\textcopyright} 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/); IFAC World Congress 2023 ; Conference date: 09-07-2023 Through 14-07-2023",
year = "2023",
doi = "10.1016/j.ifacol.2023.10.1636",
language = "English",
volume = "56",
pages = "617--624",
number = "2",

}

Download

TY - JOUR

T1 - Data-driven Nonlinear Predictive Control for Feedback Linearizable Systems

AU - Alsalti, Mohammad Salahaldeen Ahmad

AU - Lopez Mejia, Victor Gabriel

AU - Berberich, Julian

AU - Allgöwer, Frank

AU - Müller, Matthias A.

N1 - Publisher Copyright: Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

PY - 2023

Y1 - 2023

N2 - We present a data-driven nonlinear predictive control approach for the class of discrete-time multi-input multi-output feedback linearizable nonlinear systems. The scheme uses a non-parametric predictive model based only on input and noisy output data along with a set of basis functions that approximate the unknown nonlinearities. Despite the noisy output data as well as the mismatch caused by the use of basis functions, we show that the proposed multi-step robust data-driven nonlinear predictive control scheme is recursively feasible and renders the closed-loop system practically exponentially stable. We illustrate our results on a model of a fully-actuated double inverted pendulum.

AB - We present a data-driven nonlinear predictive control approach for the class of discrete-time multi-input multi-output feedback linearizable nonlinear systems. The scheme uses a non-parametric predictive model based only on input and noisy output data along with a set of basis functions that approximate the unknown nonlinearities. Despite the noisy output data as well as the mismatch caused by the use of basis functions, we show that the proposed multi-step robust data-driven nonlinear predictive control scheme is recursively feasible and renders the closed-loop system practically exponentially stable. We illustrate our results on a model of a fully-actuated double inverted pendulum.

KW - Data-driven predictive control

KW - Data-based control

KW - Feedback linearization

KW - Nonlinear predictive control

UR - http://www.scopus.com/inward/record.url?scp=85175777808&partnerID=8YFLogxK

U2 - 10.1016/j.ifacol.2023.10.1636

DO - 10.1016/j.ifacol.2023.10.1636

M3 - Conference article

VL - 56

SP - 617

EP - 624

JO - IFAC-PapersOnLine

JF - IFAC-PapersOnLine

SN - 2405-8963

IS - 2

T2 - IFAC World Congress 2023

Y2 - 9 July 2023 through 14 July 2023

ER -

Von denselben Autoren