Details
Original language | English |
---|---|
Pages (from-to) | 1421-1443 |
Number of pages | 23 |
Journal | Mineralium deposita |
Volume | 58 |
Issue number | 8 |
Early online date | 10 Jul 2023 |
Publication status | Published - Nov 2023 |
Abstract
The relationship between Sn–Ag mineralization and mantle magmatism is a topic of high interest in current ore deposit research. Here, we investigate porphyry-, skarn-, and cassiterite-sulfide type Sn-polymetallic deposits associated with granitoids and vein-type Ag–Pb–Zn deposits hosted in sub-volcanic rocks in the southern Great Xing’an Range (SGXR), northeast China, as a case example. We use He, Ar, and S isotopes and isotopic end-member simulation calculations to determine the contribution of mantle-derived fluids/melts to the ore mineralization. Our He–Ar isotope data demonstrate that the ore-forming fluids are mixtures of shallow crust-derived fluid containing radiogenic 4He but no radiogenic 40Ar and magmatic fluids with mantle-derived 3He and 40Ar. The Pb–Zn–Ag deposits have a higher contribution of magmatic volatiles than the Sn-polymetallic deposits. Sulfide δ34S values of − 2.7 to − 0.6‰ in the Pb–Zn–Ag deposits are consistent with a magmatic sulfur source, whereas sulfides with δ34S values of − 12.2 to − 0.15‰ in the Sn-polymetallic deposits signal a possibly bimodal source of sulfur, i.e., crustal light sulfur mixed with magmatic sulfur. The noble gas compositions of the ore fluids are controlled by crustal thickness, high 3He fluxes (24 to 404 at/s/cm2), and low residence time (1 to 18 Myr) of He in the asthenosphere below the SGXR. Non-equilibrium open-system magma degassing is evidenced by the range of elevated values of 4He/40Ar* ratios (4.8–127). The 3He/heat ratio of the ore fluids from the Sn and Pb–Zn–Ag deposits overlap (0.01–0.76 × 10−2 cm3 STP J−1 (cubic centimeter at standard temperature and pressure per joule) and 0.02–1.08 × 10−2 cm3 STP J−1, respectively), indicating a consequence of conduction of mantle-derived heat across the magma-hydrothermal interface. Furthermore, an increasing abundance of Sn reserves in the SGXR deposits can be equated with an increase in the mantle-derived He component in the ore fluids. These findings suggest that a continuous flux of mantle-derived fluids/melts plays an essential role in Sn–Ag–Pb–Zn mineralization.
Keywords
- He fluxes, Fluid mixing, He–Ar isotope, Mantle-derived fluids, Northeast China, Sn–Ag–Pb–Zn deposits
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geophysics
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
- Earth and Planetary Sciences(all)
- Economic Geology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Mineralium deposita, Vol. 58, No. 8, 11.2023, p. 1421-1443.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - The role of mantle melting in granite-associated hydrothermal systems
T2 - He–Ar isotopes in fluids responsible for Sn–Ag–Pb–Zn mineralization in northeast China
AU - Zhou, Zhenhua
AU - Mao, Jingwen
AU - Stuart, Finlay M.
AU - Chen, Xinkai
AU - Wilde, Simon A.
AU - Ouyang, Hegen
AU - Gao, Xu
AU - Zhao, Jiaqi
N1 - Funding Information: This work was financially supported by the Science & Technology Fundamental Resources Investigation Program (Grant No. 2022YF101900 and No. 2022YF101901), the CAGS Research Fund (Grant No. KK2208), and the National Natural Science Foundation of China (Grant No. 41772084).
PY - 2023/11
Y1 - 2023/11
N2 - The relationship between Sn–Ag mineralization and mantle magmatism is a topic of high interest in current ore deposit research. Here, we investigate porphyry-, skarn-, and cassiterite-sulfide type Sn-polymetallic deposits associated with granitoids and vein-type Ag–Pb–Zn deposits hosted in sub-volcanic rocks in the southern Great Xing’an Range (SGXR), northeast China, as a case example. We use He, Ar, and S isotopes and isotopic end-member simulation calculations to determine the contribution of mantle-derived fluids/melts to the ore mineralization. Our He–Ar isotope data demonstrate that the ore-forming fluids are mixtures of shallow crust-derived fluid containing radiogenic 4He but no radiogenic 40Ar and magmatic fluids with mantle-derived 3He and 40Ar. The Pb–Zn–Ag deposits have a higher contribution of magmatic volatiles than the Sn-polymetallic deposits. Sulfide δ34S values of − 2.7 to − 0.6‰ in the Pb–Zn–Ag deposits are consistent with a magmatic sulfur source, whereas sulfides with δ34S values of − 12.2 to − 0.15‰ in the Sn-polymetallic deposits signal a possibly bimodal source of sulfur, i.e., crustal light sulfur mixed with magmatic sulfur. The noble gas compositions of the ore fluids are controlled by crustal thickness, high 3He fluxes (24 to 404 at/s/cm2), and low residence time (1 to 18 Myr) of He in the asthenosphere below the SGXR. Non-equilibrium open-system magma degassing is evidenced by the range of elevated values of 4He/40Ar* ratios (4.8–127). The 3He/heat ratio of the ore fluids from the Sn and Pb–Zn–Ag deposits overlap (0.01–0.76 × 10−2 cm3 STP J−1 (cubic centimeter at standard temperature and pressure per joule) and 0.02–1.08 × 10−2 cm3 STP J−1, respectively), indicating a consequence of conduction of mantle-derived heat across the magma-hydrothermal interface. Furthermore, an increasing abundance of Sn reserves in the SGXR deposits can be equated with an increase in the mantle-derived He component in the ore fluids. These findings suggest that a continuous flux of mantle-derived fluids/melts plays an essential role in Sn–Ag–Pb–Zn mineralization.
AB - The relationship between Sn–Ag mineralization and mantle magmatism is a topic of high interest in current ore deposit research. Here, we investigate porphyry-, skarn-, and cassiterite-sulfide type Sn-polymetallic deposits associated with granitoids and vein-type Ag–Pb–Zn deposits hosted in sub-volcanic rocks in the southern Great Xing’an Range (SGXR), northeast China, as a case example. We use He, Ar, and S isotopes and isotopic end-member simulation calculations to determine the contribution of mantle-derived fluids/melts to the ore mineralization. Our He–Ar isotope data demonstrate that the ore-forming fluids are mixtures of shallow crust-derived fluid containing radiogenic 4He but no radiogenic 40Ar and magmatic fluids with mantle-derived 3He and 40Ar. The Pb–Zn–Ag deposits have a higher contribution of magmatic volatiles than the Sn-polymetallic deposits. Sulfide δ34S values of − 2.7 to − 0.6‰ in the Pb–Zn–Ag deposits are consistent with a magmatic sulfur source, whereas sulfides with δ34S values of − 12.2 to − 0.15‰ in the Sn-polymetallic deposits signal a possibly bimodal source of sulfur, i.e., crustal light sulfur mixed with magmatic sulfur. The noble gas compositions of the ore fluids are controlled by crustal thickness, high 3He fluxes (24 to 404 at/s/cm2), and low residence time (1 to 18 Myr) of He in the asthenosphere below the SGXR. Non-equilibrium open-system magma degassing is evidenced by the range of elevated values of 4He/40Ar* ratios (4.8–127). The 3He/heat ratio of the ore fluids from the Sn and Pb–Zn–Ag deposits overlap (0.01–0.76 × 10−2 cm3 STP J−1 (cubic centimeter at standard temperature and pressure per joule) and 0.02–1.08 × 10−2 cm3 STP J−1, respectively), indicating a consequence of conduction of mantle-derived heat across the magma-hydrothermal interface. Furthermore, an increasing abundance of Sn reserves in the SGXR deposits can be equated with an increase in the mantle-derived He component in the ore fluids. These findings suggest that a continuous flux of mantle-derived fluids/melts plays an essential role in Sn–Ag–Pb–Zn mineralization.
KW - He fluxes
KW - Fluid mixing
KW - He–Ar isotope
KW - Mantle-derived fluids
KW - Northeast China
KW - Sn–Ag–Pb–Zn deposits
UR - http://www.scopus.com/inward/record.url?scp=85164170423&partnerID=8YFLogxK
U2 - 10.1007/s00126-023-01186-8
DO - 10.1007/s00126-023-01186-8
M3 - Article
AN - SCOPUS:85164170423
VL - 58
SP - 1421
EP - 1443
JO - Mineralium deposita
JF - Mineralium deposita
SN - 0026-4598
IS - 8
ER -