Details
Original language | English |
---|---|
Article number | 114915 |
Journal | Geoderma |
Volume | 386 |
Early online date | 9 Jan 2021 |
Publication status | Published - 15 Mar 2021 |
Abstract
The physical arrangement of compounds in soil microaggregates is controlling many ecosystem functions such as soil stability and C sequestration. However, little is known about the spatial arrangement of organic and inorganic compounds in soil microaggregates, due to the lack of in-situ analyses of undisturbed material. We hypothesized that microaggregates are spatially organized due to interactions between organic matter and mineral phases. To test this, we separated the water stable, occluded, large and small microaggregate fractions (250–53 and 53–20 µm, 60 J ml−1 dispersion energy) from Ap horizons of a toposequence of sandy to loamy Luvisols (Germany) with increasing clay contents (19 to 35% clay), and subjected in total 60 individual aggregates to elemental mapping by electron probe micro analysis (EPMA), which recorded C, N, P, Al, Fe, Ca, K, Cl, and Si contents at 1 × 1 µm resolution. Stoichiometric element ratios characteristic for organic and inorganic matter were used to define discrete components of the aggregates and analyze their spatial arrangement. We found a pronounced heterogeneity in content and arrangement of discrete aggregate components, which was not reproducible for different specimens from the same soil microaggregate fraction, and thus largely independent of clay content in soil. However, nearest neighbor analyses revealed close spatial correlations between plant detritus (C:N app. 100:10) and microbial organic matter (C:N app. 10:1) indicating a spatial relationship between source and consumer. There was no systematic relationship between soil minerals and organic matter, suggesting that well-established macroscale correlations between contents of pedogenic oxides and clay minerals with soil organic matter storage do not apply to soil microaggregates.
Keywords
- Organic matter stabilization, Organo-mineral interaction, Physical occlusion, Spatial correlation of elements
ASJC Scopus subject areas
- Agricultural and Biological Sciences(all)
- Soil Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Geoderma, Vol. 386, 114915, 15.03.2021.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Spatial organization of soil microaggregates
AU - Lehndorff, Eva
AU - Rodionov, Andrei
AU - Plümer, Lutz
AU - Rottmann, Peter
AU - Spiering, Beate
AU - Dultz, Stefan
AU - Amelung, Wulf
N1 - Funding Information: This work is associated to the MAD Soil project (MADSoil – Microaggregates: Formation and turnover of the structural building blocks of soils), funded by the Deutsche Forschungsgemeinschaft ( DFG Research Unit 2179). We very much appreciated the comments by two anonymous reviewers, the journal editor Y. Capowiez and S. Crowhurst for language editing.
PY - 2021/3/15
Y1 - 2021/3/15
N2 - The physical arrangement of compounds in soil microaggregates is controlling many ecosystem functions such as soil stability and C sequestration. However, little is known about the spatial arrangement of organic and inorganic compounds in soil microaggregates, due to the lack of in-situ analyses of undisturbed material. We hypothesized that microaggregates are spatially organized due to interactions between organic matter and mineral phases. To test this, we separated the water stable, occluded, large and small microaggregate fractions (250–53 and 53–20 µm, 60 J ml−1 dispersion energy) from Ap horizons of a toposequence of sandy to loamy Luvisols (Germany) with increasing clay contents (19 to 35% clay), and subjected in total 60 individual aggregates to elemental mapping by electron probe micro analysis (EPMA), which recorded C, N, P, Al, Fe, Ca, K, Cl, and Si contents at 1 × 1 µm resolution. Stoichiometric element ratios characteristic for organic and inorganic matter were used to define discrete components of the aggregates and analyze their spatial arrangement. We found a pronounced heterogeneity in content and arrangement of discrete aggregate components, which was not reproducible for different specimens from the same soil microaggregate fraction, and thus largely independent of clay content in soil. However, nearest neighbor analyses revealed close spatial correlations between plant detritus (C:N app. 100:10) and microbial organic matter (C:N app. 10:1) indicating a spatial relationship between source and consumer. There was no systematic relationship between soil minerals and organic matter, suggesting that well-established macroscale correlations between contents of pedogenic oxides and clay minerals with soil organic matter storage do not apply to soil microaggregates.
AB - The physical arrangement of compounds in soil microaggregates is controlling many ecosystem functions such as soil stability and C sequestration. However, little is known about the spatial arrangement of organic and inorganic compounds in soil microaggregates, due to the lack of in-situ analyses of undisturbed material. We hypothesized that microaggregates are spatially organized due to interactions between organic matter and mineral phases. To test this, we separated the water stable, occluded, large and small microaggregate fractions (250–53 and 53–20 µm, 60 J ml−1 dispersion energy) from Ap horizons of a toposequence of sandy to loamy Luvisols (Germany) with increasing clay contents (19 to 35% clay), and subjected in total 60 individual aggregates to elemental mapping by electron probe micro analysis (EPMA), which recorded C, N, P, Al, Fe, Ca, K, Cl, and Si contents at 1 × 1 µm resolution. Stoichiometric element ratios characteristic for organic and inorganic matter were used to define discrete components of the aggregates and analyze their spatial arrangement. We found a pronounced heterogeneity in content and arrangement of discrete aggregate components, which was not reproducible for different specimens from the same soil microaggregate fraction, and thus largely independent of clay content in soil. However, nearest neighbor analyses revealed close spatial correlations between plant detritus (C:N app. 100:10) and microbial organic matter (C:N app. 10:1) indicating a spatial relationship between source and consumer. There was no systematic relationship between soil minerals and organic matter, suggesting that well-established macroscale correlations between contents of pedogenic oxides and clay minerals with soil organic matter storage do not apply to soil microaggregates.
KW - Organic matter stabilization
KW - Organo-mineral interaction
KW - Physical occlusion
KW - Spatial correlation of elements
UR - http://www.scopus.com/inward/record.url?scp=85099183132&partnerID=8YFLogxK
U2 - 10.1016/j.geoderma.2020.114915
DO - 10.1016/j.geoderma.2020.114915
M3 - Article
AN - SCOPUS:85099183132
VL - 386
JO - Geoderma
JF - Geoderma
SN - 0016-7061
M1 - 114915
ER -