Details
Original language | English |
---|---|
Pages (from-to) | 425-429 |
Number of pages | 5 |
Journal | Comptes Rendus Mathematique (Online) |
Volume | 360 |
Early online date | 23 May 2022 |
Publication status | Published - 2022 |
Abstract
ASJC Scopus subject areas
- Mathematics(all)
- General Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Comptes Rendus Mathematique (Online), Vol. 360, 2022, p. 425-429.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Smooth components on special iterated Hilbert schemes
AU - Reede, Fabian
N1 - Publisher Copyright: © 2022 Elsevier Masson SAS. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Let S be a smooth projective surface with p_g=q=0. We prove that there is a polynomial p(t) such that the Hilbert scheme Hilb^p(t)(S[n]) of the Hilbert scheme S[n] of length n subschemes contains a smooth connected component isomorphic to S.
AB - Let S be a smooth projective surface with p_g=q=0. We prove that there is a polynomial p(t) such that the Hilbert scheme Hilb^p(t)(S[n]) of the Hilbert scheme S[n] of length n subschemes contains a smooth connected component isomorphic to S.
UR - http://www.scopus.com/inward/record.url?scp=85134649403&partnerID=8YFLogxK
U2 - 10.5802/crmath.307
DO - 10.5802/crmath.307
M3 - Article
VL - 360
SP - 425
EP - 429
JO - Comptes Rendus Mathematique (Online)
JF - Comptes Rendus Mathematique (Online)
SN - 1631-073X
ER -