Loading [MathJax]/extensions/tex2jax.js

Smooth components on special iterated Hilbert schemes

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Fabian Reede

Research Organisations

Details

Original languageEnglish
Pages (from-to)425-429
Number of pages5
JournalComptes Rendus Mathematique (Online)
Volume360
Early online date23 May 2022
Publication statusPublished - 2022

Abstract

Let S be a smooth projective surface with p_g=q=0. We prove that there is a polynomial p(t) such that the Hilbert scheme Hilb^p(t)(S[n]) of the Hilbert scheme S[n] of length n subschemes contains a smooth connected component isomorphic to S.

ASJC Scopus subject areas

Cite this

Smooth components on special iterated Hilbert schemes. / Reede, Fabian.
In: Comptes Rendus Mathematique (Online), Vol. 360, 2022, p. 425-429.

Research output: Contribution to journalArticleResearchpeer review

Reede F. Smooth components on special iterated Hilbert schemes. Comptes Rendus Mathematique (Online). 2022;360:425-429. Epub 2022 May 23. doi: 10.5802/crmath.307, 10.48550/arXiv.2109.01112
Download
@article{f69cbb1186e34588a9757464a75c9dba,
title = "Smooth components on special iterated Hilbert schemes",
abstract = "Let S be a smooth projective surface with p_g=q=0. We prove that there is a polynomial p(t) such that the Hilbert scheme Hilb^p(t)(S[n]) of the Hilbert scheme S[n] of length n subschemes contains a smooth connected component isomorphic to S. ",
author = "Fabian Reede",
note = "Publisher Copyright: {\textcopyright} 2022 Elsevier Masson SAS. All rights reserved.",
year = "2022",
doi = "10.5802/crmath.307",
language = "English",
volume = "360",
pages = "425--429",
journal = "Comptes Rendus Mathematique (Online)",
issn = "1631-073X",
publisher = "Academie des sciences",

}

Download

TY - JOUR

T1 - Smooth components on special iterated Hilbert schemes

AU - Reede, Fabian

N1 - Publisher Copyright: © 2022 Elsevier Masson SAS. All rights reserved.

PY - 2022

Y1 - 2022

N2 - Let S be a smooth projective surface with p_g=q=0. We prove that there is a polynomial p(t) such that the Hilbert scheme Hilb^p(t)(S[n]) of the Hilbert scheme S[n] of length n subschemes contains a smooth connected component isomorphic to S.

AB - Let S be a smooth projective surface with p_g=q=0. We prove that there is a polynomial p(t) such that the Hilbert scheme Hilb^p(t)(S[n]) of the Hilbert scheme S[n] of length n subschemes contains a smooth connected component isomorphic to S.

UR - http://www.scopus.com/inward/record.url?scp=85134649403&partnerID=8YFLogxK

U2 - 10.5802/crmath.307

DO - 10.5802/crmath.307

M3 - Article

VL - 360

SP - 425

EP - 429

JO - Comptes Rendus Mathematique (Online)

JF - Comptes Rendus Mathematique (Online)

SN - 1631-073X

ER -