Details
Original language | English |
---|---|
Pages (from-to) | 5825-5844 |
Number of pages | 20 |
Journal | Environmental Science and Pollution Research |
Volume | 27 |
Issue number | 6 |
Early online date | 19 Dec 2019 |
Publication status | Published - Feb 2020 |
Abstract
Particulate matter in European cities, especially in urban areas, is mainly from urban road traffic and constitutes a great threat to the health of inhabitants. Therefore, understanding of the role of common urban roadside plant plays for particulate matter (PM) reduction would have important meaning for the mitigation of urban air pollution. The leaf surface PM capturing capacity of 12 representative urban plants (five shrubs and seven trees) alongside one main street in Hanover Germany was explored in this study. Significant differences for the amount of captured PM (both PM10 and PM2.5) on the leaf surface were found between plant species. Leaves of Taxus baccata, Berberis thunbergii, Pinus nigra, and Quercus robur showed the highest capturing capacity, while leaves of Prunus laurocerasus and Carpinus betulus showed the lowest value. Leaf shape is an important factor which affects the capturing capacity of the tested plant species. Needle-leaved pants were relatively more effective than broad-leaved species. Besides, species with small leaf surface area (0–10 cm2) showed a notably higher capacity than species with large leaf surface area (over 100 cm2). Additionally, by the observation of leaf surface characteristics, plant species with rough and hairy leaf surface tended to be more effective than species with smooth leaf surface. More PM was found distributed on the upper leaf surface close to the midrib rather than on the surface area away from it. At last, no significant correlation was found between the leaf surface contact angle and its PM capturing capacity for the 12 tested plant species in September. In summary, leaf traits including leaf form, leaf shape, leaf surface area, leaf surface hydrophilicity and leaf surface characteristics all have notable effects on the PM capturing capacity of the roadside plant species. This study provides a scientific basis for roadside plants as an eco-friendly solution for the reduction of urban traffic–related PM and stresses the importance of leaf traits as criteria for the plant selection.
Keywords
- Contact angle, Leaf area, Leaf shape, PM, SEM
ASJC Scopus subject areas
- Environmental Science(all)
- Environmental Chemistry
- Environmental Science(all)
- Pollution
- Environmental Science(all)
- Health, Toxicology and Mutagenesis
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Environmental Science and Pollution Research, Vol. 27, No. 6, 02.2020, p. 5825-5844.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Reduction of urban traffic–related particulate matter
T2 - leaf trait matters
AU - He, Chen
AU - Qiu, Kaiyang
AU - Pott, Richard
N1 - Publisher Copyright: © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2020/2
Y1 - 2020/2
N2 - Particulate matter in European cities, especially in urban areas, is mainly from urban road traffic and constitutes a great threat to the health of inhabitants. Therefore, understanding of the role of common urban roadside plant plays for particulate matter (PM) reduction would have important meaning for the mitigation of urban air pollution. The leaf surface PM capturing capacity of 12 representative urban plants (five shrubs and seven trees) alongside one main street in Hanover Germany was explored in this study. Significant differences for the amount of captured PM (both PM10 and PM2.5) on the leaf surface were found between plant species. Leaves of Taxus baccata, Berberis thunbergii, Pinus nigra, and Quercus robur showed the highest capturing capacity, while leaves of Prunus laurocerasus and Carpinus betulus showed the lowest value. Leaf shape is an important factor which affects the capturing capacity of the tested plant species. Needle-leaved pants were relatively more effective than broad-leaved species. Besides, species with small leaf surface area (0–10 cm2) showed a notably higher capacity than species with large leaf surface area (over 100 cm2). Additionally, by the observation of leaf surface characteristics, plant species with rough and hairy leaf surface tended to be more effective than species with smooth leaf surface. More PM was found distributed on the upper leaf surface close to the midrib rather than on the surface area away from it. At last, no significant correlation was found between the leaf surface contact angle and its PM capturing capacity for the 12 tested plant species in September. In summary, leaf traits including leaf form, leaf shape, leaf surface area, leaf surface hydrophilicity and leaf surface characteristics all have notable effects on the PM capturing capacity of the roadside plant species. This study provides a scientific basis for roadside plants as an eco-friendly solution for the reduction of urban traffic–related PM and stresses the importance of leaf traits as criteria for the plant selection.
AB - Particulate matter in European cities, especially in urban areas, is mainly from urban road traffic and constitutes a great threat to the health of inhabitants. Therefore, understanding of the role of common urban roadside plant plays for particulate matter (PM) reduction would have important meaning for the mitigation of urban air pollution. The leaf surface PM capturing capacity of 12 representative urban plants (five shrubs and seven trees) alongside one main street in Hanover Germany was explored in this study. Significant differences for the amount of captured PM (both PM10 and PM2.5) on the leaf surface were found between plant species. Leaves of Taxus baccata, Berberis thunbergii, Pinus nigra, and Quercus robur showed the highest capturing capacity, while leaves of Prunus laurocerasus and Carpinus betulus showed the lowest value. Leaf shape is an important factor which affects the capturing capacity of the tested plant species. Needle-leaved pants were relatively more effective than broad-leaved species. Besides, species with small leaf surface area (0–10 cm2) showed a notably higher capacity than species with large leaf surface area (over 100 cm2). Additionally, by the observation of leaf surface characteristics, plant species with rough and hairy leaf surface tended to be more effective than species with smooth leaf surface. More PM was found distributed on the upper leaf surface close to the midrib rather than on the surface area away from it. At last, no significant correlation was found between the leaf surface contact angle and its PM capturing capacity for the 12 tested plant species in September. In summary, leaf traits including leaf form, leaf shape, leaf surface area, leaf surface hydrophilicity and leaf surface characteristics all have notable effects on the PM capturing capacity of the roadside plant species. This study provides a scientific basis for roadside plants as an eco-friendly solution for the reduction of urban traffic–related PM and stresses the importance of leaf traits as criteria for the plant selection.
KW - Contact angle
KW - Leaf area
KW - Leaf shape
KW - PM
KW - SEM
UR - http://www.scopus.com/inward/record.url?scp=85077084184&partnerID=8YFLogxK
U2 - 10.1007/s11356-019-07160-0
DO - 10.1007/s11356-019-07160-0
M3 - Article
C2 - 31853855
AN - SCOPUS:85077084184
VL - 27
SP - 5825
EP - 5844
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
SN - 0944-1344
IS - 6
ER -