Details
Original language | English |
---|---|
Article number | 020322 |
Number of pages | 39 |
Journal | PRX Quantum |
Volume | 5 |
Issue number | 2 |
Publication status | Published - 26 Apr 2024 |
Abstract
Atomic high-precision measurements have become a competitive and essential technique for tests of fundamental physics, the Standard Model, and our theory of gravity. It is therefore self-evident that such measurements call for a consistent relativistic description of atoms that eventually originates from quantum field theories like quantum electrodynamics. Most quantum metrological approaches even postulate effective field-theoretical treatments to describe a precision enhancement through techniques like squeezing. However, a consistent derivation of interacting atomic quantum gases from an elementary quantum field theory that includes both the internal structure as well as the center of mass of atoms, has not yet been addressed. We present such a subspace effective field theory for interacting, spin carrying, and possibly charged ensembles of atoms composed of nucleus and electron that form composite bosons called cobosons, where the interaction with light is included in a multipolar description. Relativistic corrections to the energy of a single coboson, light-matter interaction, and the scattering potential between cobosons arise in a consistent and natural manner. In particular, we obtain a relativistic coupling between the coboson's center-of-mass motion and internal structure encoded by the mass defect. We use these results to derive modified bound-state energies, including the motion of ions, modified scattering potentials, a relativistic extension of the Gross-Pitaevskii equation, and the mass defect applicable to atomic clocks or quantum clock interferometry.
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Computer Science(all)
- General Computer Science
- Mathematics(all)
- Mathematical Physics
- Physics and Astronomy(all)
- General Physics and Astronomy
- Mathematics(all)
- Applied Mathematics
- Engineering(all)
- Electrical and Electronic Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: PRX Quantum, Vol. 5, No. 2, 020322, 26.04.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Quantum Field Theory for Multipolar Composite Bosons with Mass Defect and Relativistic Corrections
AU - Asano, Tobias
AU - Giese, Enno
AU - Di Pumpo, Fabio
N1 - Publisher Copyright: © 2024 authors. Published by the American Physical Society.
PY - 2024/4/26
Y1 - 2024/4/26
N2 - Atomic high-precision measurements have become a competitive and essential technique for tests of fundamental physics, the Standard Model, and our theory of gravity. It is therefore self-evident that such measurements call for a consistent relativistic description of atoms that eventually originates from quantum field theories like quantum electrodynamics. Most quantum metrological approaches even postulate effective field-theoretical treatments to describe a precision enhancement through techniques like squeezing. However, a consistent derivation of interacting atomic quantum gases from an elementary quantum field theory that includes both the internal structure as well as the center of mass of atoms, has not yet been addressed. We present such a subspace effective field theory for interacting, spin carrying, and possibly charged ensembles of atoms composed of nucleus and electron that form composite bosons called cobosons, where the interaction with light is included in a multipolar description. Relativistic corrections to the energy of a single coboson, light-matter interaction, and the scattering potential between cobosons arise in a consistent and natural manner. In particular, we obtain a relativistic coupling between the coboson's center-of-mass motion and internal structure encoded by the mass defect. We use these results to derive modified bound-state energies, including the motion of ions, modified scattering potentials, a relativistic extension of the Gross-Pitaevskii equation, and the mass defect applicable to atomic clocks or quantum clock interferometry.
AB - Atomic high-precision measurements have become a competitive and essential technique for tests of fundamental physics, the Standard Model, and our theory of gravity. It is therefore self-evident that such measurements call for a consistent relativistic description of atoms that eventually originates from quantum field theories like quantum electrodynamics. Most quantum metrological approaches even postulate effective field-theoretical treatments to describe a precision enhancement through techniques like squeezing. However, a consistent derivation of interacting atomic quantum gases from an elementary quantum field theory that includes both the internal structure as well as the center of mass of atoms, has not yet been addressed. We present such a subspace effective field theory for interacting, spin carrying, and possibly charged ensembles of atoms composed of nucleus and electron that form composite bosons called cobosons, where the interaction with light is included in a multipolar description. Relativistic corrections to the energy of a single coboson, light-matter interaction, and the scattering potential between cobosons arise in a consistent and natural manner. In particular, we obtain a relativistic coupling between the coboson's center-of-mass motion and internal structure encoded by the mass defect. We use these results to derive modified bound-state energies, including the motion of ions, modified scattering potentials, a relativistic extension of the Gross-Pitaevskii equation, and the mass defect applicable to atomic clocks or quantum clock interferometry.
UR - http://www.scopus.com/inward/record.url?scp=85191427817&partnerID=8YFLogxK
U2 - 10.1103/PRXQuantum.5.020322
DO - 10.1103/PRXQuantum.5.020322
M3 - Article
AN - SCOPUS:85191427817
VL - 5
JO - PRX Quantum
JF - PRX Quantum
IS - 2
M1 - 020322
ER -