Loading [MathJax]/extensions/tex2jax.js

Quadratic forms for a 1-form on an isolated complete intersection singularity

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Wolfgang Ebeling
  • Sabir M. Gusein-Zade

Research Organisations

External Research Organisations

  • Lomonosov Moscow State University
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 6
  • Captures
    • Readers: 2
see details

Details

Original languageEnglish
Pages (from-to)755-766
Number of pages12
JournalMathematische Zeitschrift
Volume252
Issue number4
Publication statusPublished - Apr 2006

Abstract

We consider a holomorphic 1-form ω with an isolated zero on an isolated complete intersection singularity (V,0). We construct quadratic forms on an algebra of functions and on a module of differential forms associated to the pair (V,ω). They generalize the Eisenbud-Levine-Khimshiashvili quadratic form defined for a smooth V.

Cite this

Quadratic forms for a 1-form on an isolated complete intersection singularity. / Ebeling, Wolfgang; Gusein-Zade, Sabir M.
In: Mathematische Zeitschrift, Vol. 252, No. 4, 04.2006, p. 755-766.

Research output: Contribution to journalArticleResearchpeer review

Ebeling W, Gusein-Zade SM. Quadratic forms for a 1-form on an isolated complete intersection singularity. Mathematische Zeitschrift. 2006 Apr;252(4):755-766. doi: 10.1007/s00209-005-0877-7
Ebeling, Wolfgang ; Gusein-Zade, Sabir M. / Quadratic forms for a 1-form on an isolated complete intersection singularity. In: Mathematische Zeitschrift. 2006 ; Vol. 252, No. 4. pp. 755-766.
Download
@article{44306853ec0b4712925dc5395e740c27,
title = "Quadratic forms for a 1-form on an isolated complete intersection singularity",
abstract = "We consider a holomorphic 1-form ω with an isolated zero on an isolated complete intersection singularity (V,0). We construct quadratic forms on an algebra of functions and on a module of differential forms associated to the pair (V,ω). They generalize the Eisenbud-Levine-Khimshiashvili quadratic form defined for a smooth V. ",
author = "Wolfgang Ebeling and Gusein-Zade, {Sabir M.}",
note = "Copyright: Copyright 2006 Elsevier B.V., All rights reserved.",
year = "2006",
month = apr,
doi = "10.1007/s00209-005-0877-7",
language = "English",
volume = "252",
pages = "755--766",
journal = "Mathematische Zeitschrift",
issn = "0025-5874",
publisher = "Springer New York",
number = "4",

}

Download

TY - JOUR

T1 - Quadratic forms for a 1-form on an isolated complete intersection singularity

AU - Ebeling, Wolfgang

AU - Gusein-Zade, Sabir M.

N1 - Copyright: Copyright 2006 Elsevier B.V., All rights reserved.

PY - 2006/4

Y1 - 2006/4

N2 - We consider a holomorphic 1-form ω with an isolated zero on an isolated complete intersection singularity (V,0). We construct quadratic forms on an algebra of functions and on a module of differential forms associated to the pair (V,ω). They generalize the Eisenbud-Levine-Khimshiashvili quadratic form defined for a smooth V.

AB - We consider a holomorphic 1-form ω with an isolated zero on an isolated complete intersection singularity (V,0). We construct quadratic forms on an algebra of functions and on a module of differential forms associated to the pair (V,ω). They generalize the Eisenbud-Levine-Khimshiashvili quadratic form defined for a smooth V.

UR - http://www.scopus.com/inward/record.url?scp=32944467810&partnerID=8YFLogxK

U2 - 10.1007/s00209-005-0877-7

DO - 10.1007/s00209-005-0877-7

M3 - Article

AN - SCOPUS:32944467810

VL - 252

SP - 755

EP - 766

JO - Mathematische Zeitschrift

JF - Mathematische Zeitschrift

SN - 0025-5874

IS - 4

ER -