Details
Original language | English |
---|---|
Title of host publication | Proceedings of the 22nd International ESAFORM Conference on Material Forming |
Subtitle of host publication | ESAFORM 2019 |
Editors | Pedro Arrazola, Eneko Saenz de Argandona, Nagore Otegi, Joseba Mendiguren, Mikel Saez de Buruaga, Aitor Madariaga, Lander Galdos |
Publisher | American Institute of Physics Inc. |
Number of pages | 7 |
ISBN (electronic) | 9780735418479 |
Publication status | Published - 2 Jul 2019 |
Event | 22nd International ESAFORM Conference on Material Forming, ESAFORM 2019 - Vitoria-Gasteiz, Spain Duration: 8 May 2019 → 10 May 2019 |
Publication series
Name | AIP Conference Proceedings |
---|---|
Number | 1 |
Volume | 2113 |
ISSN (Print) | 0094-243X |
ISSN (electronic) | 1551-7616 |
Abstract
Undergoing the Tailored Forming process chain, coaxial aluminium-steel profiles joined by co-extrusion are formed into hybrid bearing bushings by die forging. During the joining of aluminium and steel, intermetallic phases may develop. As these phases are very hard and brittle, it is important to be able to predict the width of the resulting intermetallic layer because it is likely to reduce the strength of the compound for the subsequent forging step. In the scope of this paper, a possibility for numerical calculation of the resulting phase thickness during the co-extrusion of aluminium and steel, by means of Lateral Angular Co-Extrusion (LACE), is presented. In the first step, an analogy test on a forming dilatometer was developed for the experimental investigation of the intermetallic phase formation. The width of the intermetallic phase seam was determined by means of scanning electron microscopy using an image processing tool. Based on the experimental results, a calculation instruction was defined to describe the intermetallic phase thickness as a function of temperature and contact time. The function was implemented in a commercial finite element (FE) software by means of a user-defined subroutine and validated on the basis of experimental data.
ASJC Scopus subject areas
- Agricultural and Biological Sciences(all)
- Ecology, Evolution, Behavior and Systematics
- Environmental Science(all)
- Ecology
- Agricultural and Biological Sciences(all)
- Plant Science
- Physics and Astronomy(all)
- General Physics and Astronomy
- Environmental Science(all)
- Nature and Landscape Conservation
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Proceedings of the 22nd International ESAFORM Conference on Material Forming: ESAFORM 2019. ed. / Pedro Arrazola; Eneko Saenz de Argandona; Nagore Otegi; Joseba Mendiguren; Mikel Saez de Buruaga; Aitor Madariaga; Lander Galdos. American Institute of Physics Inc., 2019. 040029 (AIP Conference Proceedings; Vol. 2113, No. 1).
Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
}
TY - GEN
T1 - Numerical modeling of the development of intermetallic layers between aluminium and steel during co-extrusion
AU - Behrens, Bernd-Arno
AU - Klose, Christian
AU - Thürer, Susanne Elisabeth
AU - Heimes, Norman
AU - Uhe, Johanna
N1 - Funding information: The results presented in this paper were obtained within the Collaborative Research Centre 1153 “Process chain to produce hybrid high performance components by Tailored Forming” in the subproject A1, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 252662854. The authors would like to thank the German Research Foundation for the financial support of this project.
PY - 2019/7/2
Y1 - 2019/7/2
N2 - Undergoing the Tailored Forming process chain, coaxial aluminium-steel profiles joined by co-extrusion are formed into hybrid bearing bushings by die forging. During the joining of aluminium and steel, intermetallic phases may develop. As these phases are very hard and brittle, it is important to be able to predict the width of the resulting intermetallic layer because it is likely to reduce the strength of the compound for the subsequent forging step. In the scope of this paper, a possibility for numerical calculation of the resulting phase thickness during the co-extrusion of aluminium and steel, by means of Lateral Angular Co-Extrusion (LACE), is presented. In the first step, an analogy test on a forming dilatometer was developed for the experimental investigation of the intermetallic phase formation. The width of the intermetallic phase seam was determined by means of scanning electron microscopy using an image processing tool. Based on the experimental results, a calculation instruction was defined to describe the intermetallic phase thickness as a function of temperature and contact time. The function was implemented in a commercial finite element (FE) software by means of a user-defined subroutine and validated on the basis of experimental data.
AB - Undergoing the Tailored Forming process chain, coaxial aluminium-steel profiles joined by co-extrusion are formed into hybrid bearing bushings by die forging. During the joining of aluminium and steel, intermetallic phases may develop. As these phases are very hard and brittle, it is important to be able to predict the width of the resulting intermetallic layer because it is likely to reduce the strength of the compound for the subsequent forging step. In the scope of this paper, a possibility for numerical calculation of the resulting phase thickness during the co-extrusion of aluminium and steel, by means of Lateral Angular Co-Extrusion (LACE), is presented. In the first step, an analogy test on a forming dilatometer was developed for the experimental investigation of the intermetallic phase formation. The width of the intermetallic phase seam was determined by means of scanning electron microscopy using an image processing tool. Based on the experimental results, a calculation instruction was defined to describe the intermetallic phase thickness as a function of temperature and contact time. The function was implemented in a commercial finite element (FE) software by means of a user-defined subroutine and validated on the basis of experimental data.
UR - http://www.scopus.com/inward/record.url?scp=85068870885&partnerID=8YFLogxK
U2 - 10.1063/1.5112563
DO - 10.1063/1.5112563
M3 - Conference contribution
AN - SCOPUS:85068870885
T3 - AIP Conference Proceedings
BT - Proceedings of the 22nd International ESAFORM Conference on Material Forming
A2 - Arrazola, Pedro
A2 - Saenz de Argandona, Eneko
A2 - Otegi, Nagore
A2 - Mendiguren, Joseba
A2 - Saez de Buruaga, Mikel
A2 - Madariaga, Aitor
A2 - Galdos, Lander
PB - American Institute of Physics Inc.
T2 - 22nd International ESAFORM Conference on Material Forming, ESAFORM 2019
Y2 - 8 May 2019 through 10 May 2019
ER -