Nodal Enriques surfaces are Reye congruences

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Gebhard Martin
  • Giacomo Mezzedimi
  • Davide Cesare Veniani

External Research Organisations

  • University of Bonn
  • University of Stuttgart
View graph of relations

Details

Original languageEnglish
Pages (from-to)49-65
Number of pages17
JournalJournal fur die Reine und Angewandte Mathematik
Volume2024
Issue number808
Publication statusPublished - 1 Mar 2024
Externally publishedYes

Abstract

We show that every classical Enriques surface containing a smooth rational curve is a Reye congruence.

Keywords

    math.AG, 14J28 (14J10)

ASJC Scopus subject areas

Cite this

Nodal Enriques surfaces are Reye congruences. / Martin, Gebhard; Mezzedimi, Giacomo; Veniani, Davide Cesare.
In: Journal fur die Reine und Angewandte Mathematik, Vol. 2024, No. 808, 01.03.2024, p. 49-65.

Research output: Contribution to journalArticleResearchpeer review

Martin G, Mezzedimi G, Veniani DC. Nodal Enriques surfaces are Reye congruences. Journal fur die Reine und Angewandte Mathematik. 2024 Mar 1;2024(808):49-65. doi: 10.1515/crelle-2023-0092
Martin, Gebhard ; Mezzedimi, Giacomo ; Veniani, Davide Cesare. / Nodal Enriques surfaces are Reye congruences. In: Journal fur die Reine und Angewandte Mathematik. 2024 ; Vol. 2024, No. 808. pp. 49-65.
Download
@article{f9d0716a55fb4ddb977ee6da9741fd92,
title = "Nodal Enriques surfaces are Reye congruences",
abstract = " We show that every classical Enriques surface containing a smooth rational curve is a Reye congruence. ",
keywords = "math.AG, 14J28 (14J10)",
author = "Gebhard Martin and Giacomo Mezzedimi and Veniani, {Davide Cesare}",
note = "Publisher Copyright: {\textcopyright} 2024 Walter de Gruyter GmbH, Berlin/Boston.",
year = "2024",
month = mar,
day = "1",
doi = "10.1515/crelle-2023-0092",
language = "English",
volume = "2024",
pages = "49--65",
journal = "Journal fur die Reine und Angewandte Mathematik",
issn = "0075-4102",
publisher = "Walter de Gruyter GmbH",
number = "808",

}

Download

TY - JOUR

T1 - Nodal Enriques surfaces are Reye congruences

AU - Martin, Gebhard

AU - Mezzedimi, Giacomo

AU - Veniani, Davide Cesare

N1 - Publisher Copyright: © 2024 Walter de Gruyter GmbH, Berlin/Boston.

PY - 2024/3/1

Y1 - 2024/3/1

N2 - We show that every classical Enriques surface containing a smooth rational curve is a Reye congruence.

AB - We show that every classical Enriques surface containing a smooth rational curve is a Reye congruence.

KW - math.AG

KW - 14J28 (14J10)

UR - http://www.scopus.com/inward/record.url?scp=85181445557&partnerID=8YFLogxK

U2 - 10.1515/crelle-2023-0092

DO - 10.1515/crelle-2023-0092

M3 - Article

VL - 2024

SP - 49

EP - 65

JO - Journal fur die Reine und Angewandte Mathematik

JF - Journal fur die Reine und Angewandte Mathematik

SN - 0075-4102

IS - 808

ER -