Details
Original language | English |
---|---|
Pages (from-to) | 49-65 |
Number of pages | 17 |
Journal | Journal fur die Reine und Angewandte Mathematik |
Volume | 2024 |
Issue number | 808 |
Publication status | Published - 1 Mar 2024 |
Externally published | Yes |
Abstract
Keywords
- math.AG, 14J28 (14J10)
ASJC Scopus subject areas
- Mathematics(all)
- Applied Mathematics
- Mathematics(all)
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal fur die Reine und Angewandte Mathematik, Vol. 2024, No. 808, 01.03.2024, p. 49-65.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Nodal Enriques surfaces are Reye congruences
AU - Martin, Gebhard
AU - Mezzedimi, Giacomo
AU - Veniani, Davide Cesare
N1 - Publisher Copyright: © 2024 Walter de Gruyter GmbH, Berlin/Boston.
PY - 2024/3/1
Y1 - 2024/3/1
N2 - We show that every classical Enriques surface containing a smooth rational curve is a Reye congruence.
AB - We show that every classical Enriques surface containing a smooth rational curve is a Reye congruence.
KW - math.AG
KW - 14J28 (14J10)
UR - http://www.scopus.com/inward/record.url?scp=85181445557&partnerID=8YFLogxK
U2 - 10.1515/crelle-2023-0092
DO - 10.1515/crelle-2023-0092
M3 - Article
VL - 2024
SP - 49
EP - 65
JO - Journal fur die Reine und Angewandte Mathematik
JF - Journal fur die Reine und Angewandte Mathematik
SN - 0075-4102
IS - 808
ER -