Details
Original language | English |
---|---|
Publication status | E-pub ahead of print - 23 Aug 2023 |
Abstract
Keywords
- math.NT
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
2023.
Research output: Working paper/Preprint › Preprint
}
TY - UNPB
T1 - Multiplicative relations among differences of singular moduli
AU - Aslanyan, Vahagn
AU - Eterović, Sebastian
AU - Fowler, Guy
N1 - 36 pages
PY - 2023/8/23
Y1 - 2023/8/23
N2 - Let n \in \mathbb{Z}_{>0}. We prove that there exist a finite set V and finitely many algebraic curves T_1, \ldots, T_k with the following property: if (x_1, \ldots, x_n, y) is an (n+1)-tuple of pairwise distinct singular moduli such that \prod_{i=1}^n (x_i - y)^{a_i}=1 for some a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}, then (x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k. Further, the curves T_1, \ldots, T_k may be determined explicitly for a given n.
AB - Let n \in \mathbb{Z}_{>0}. We prove that there exist a finite set V and finitely many algebraic curves T_1, \ldots, T_k with the following property: if (x_1, \ldots, x_n, y) is an (n+1)-tuple of pairwise distinct singular moduli such that \prod_{i=1}^n (x_i - y)^{a_i}=1 for some a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}, then (x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k. Further, the curves T_1, \ldots, T_k may be determined explicitly for a given n.
KW - math.NT
U2 - 10.48550/arXiv.2308.12244
DO - 10.48550/arXiv.2308.12244
M3 - Preprint
BT - Multiplicative relations among differences of singular moduli
ER -