## Details

Original language | English |
---|---|

Publication status | E-pub ahead of print - 23 Aug 2023 |

## Abstract

## Keywords

- math.NT

## Cite this

- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS

**Multiplicative relations among differences of singular moduli.**/ Aslanyan, Vahagn; Eterović, Sebastian; Fowler, Guy.

2023.

Research output: Working paper/Preprint › Preprint

*Multiplicative relations among differences of singular moduli*. Advance online publication. https://doi.org/10.48550/arXiv.2308.12244

}

TY - UNPB

T1 - Multiplicative relations among differences of singular moduli

AU - Aslanyan, Vahagn

AU - Eterović, Sebastian

AU - Fowler, Guy

N1 - 36 pages

PY - 2023/8/23

Y1 - 2023/8/23

N2 - Let \(n \in \mathbb{Z}_{>0}\). We prove that there exist a finite set \(V\) and finitely many algebraic curves \(T_1, \ldots, T_k\) with the following property: if \((x_1, \ldots, x_n, y)\) is an \((n+1)\)-tuple of pairwise distinct singular moduli such that \(\prod_{i=1}^n (x_i - y)^{a_i}=1\) for some \(a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}\), then \((x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k\). Further, the curves \(T_1, \ldots, T_k\) may be determined explicitly for a given \(n\).

AB - Let \(n \in \mathbb{Z}_{>0}\). We prove that there exist a finite set \(V\) and finitely many algebraic curves \(T_1, \ldots, T_k\) with the following property: if \((x_1, \ldots, x_n, y)\) is an \((n+1)\)-tuple of pairwise distinct singular moduli such that \(\prod_{i=1}^n (x_i - y)^{a_i}=1\) for some \(a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}\), then \((x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k\). Further, the curves \(T_1, \ldots, T_k\) may be determined explicitly for a given \(n\).

KW - math.NT

U2 - 10.48550/arXiv.2308.12244

DO - 10.48550/arXiv.2308.12244

M3 - Preprint

BT - Multiplicative relations among differences of singular moduli

ER -