Details
| Original language | English |
|---|---|
| Journal | Annali della Scuola normale superiore di Pisa - Classe di scienze |
| Early online date | 20 Dec 2024 |
| Publication status | E-pub ahead of print - 20 Dec 2024 |
Abstract
Keywords
- math.NT
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Annali della Scuola normale superiore di Pisa - Classe di scienze, 20.12.2024.
Research output: Contribution to journal › Article › Research
}
TY - JOUR
T1 - Multiplicative relations among differences of singular moduli
AU - Aslanyan, Vahagn
AU - Eterović, Sebastian
AU - Fowler, Guy
N1 - 36 pages
PY - 2024/12/20
Y1 - 2024/12/20
N2 - Let \(n \in \mathbb{Z}_{>0}\). We prove that there exist a finite set \(V\) and finitely many algebraic curves \(T_1, \ldots, T_k\) with the following property: if \((x_1, \ldots, x_n, y)\) is an \((n+1)\)-tuple of pairwise distinct singular moduli such that \(\prod_{i=1}^n (x_i - y)^{a_i}=1\) for some \(a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}\), then \((x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k\). Further, the curves \(T_1, \ldots, T_k\) may be determined explicitly for a given \(n\).
AB - Let \(n \in \mathbb{Z}_{>0}\). We prove that there exist a finite set \(V\) and finitely many algebraic curves \(T_1, \ldots, T_k\) with the following property: if \((x_1, \ldots, x_n, y)\) is an \((n+1)\)-tuple of pairwise distinct singular moduli such that \(\prod_{i=1}^n (x_i - y)^{a_i}=1\) for some \(a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}\), then \((x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k\). Further, the curves \(T_1, \ldots, T_k\) may be determined explicitly for a given \(n\).
KW - math.NT
U2 - 10.2422/2036-2145.202309_020
DO - 10.2422/2036-2145.202309_020
M3 - Article
JO - Annali della Scuola normale superiore di Pisa - Classe di scienze
JF - Annali della Scuola normale superiore di Pisa - Classe di scienze
SN - 0391-173X
ER -