Multiplicative relations among differences of singular moduli

Research output: Contribution to journalArticleResearch

Authors

  • Vahagn Aslanyan
  • Sebastian Eterović
  • Guy Fowler
View graph of relations

Details

Original languageEnglish
JournalAnnali della Scuola normale superiore di Pisa - Classe di scienze
Early online date20 Dec 2024
Publication statusE-pub ahead of print - 20 Dec 2024

Abstract

Let \(n \in \mathbb{Z}_{>0}\). We prove that there exist a finite set \(V\) and finitely many algebraic curves \(T_1, \ldots, T_k\) with the following property: if \((x_1, \ldots, x_n, y)\) is an \((n+1)\)-tuple of pairwise distinct singular moduli such that \(\prod_{i=1}^n (x_i - y)^{a_i}=1\) for some \(a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}\), then \((x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k\). Further, the curves \(T_1, \ldots, T_k\) may be determined explicitly for a given \(n\).

Keywords

    math.NT

Cite this

Multiplicative relations among differences of singular moduli. / Aslanyan, Vahagn; Eterović, Sebastian; Fowler, Guy.
In: Annali della Scuola normale superiore di Pisa - Classe di scienze, 20.12.2024.

Research output: Contribution to journalArticleResearch

Aslanyan V, Eterović S, Fowler G. Multiplicative relations among differences of singular moduli. Annali della Scuola normale superiore di Pisa - Classe di scienze. 2024 Dec 20. Epub 2024 Dec 20. doi: 10.2422/2036-2145.202309_020, 10.48550/arXiv.2308.12244
Download
@article{e135dba679eb41969d72d166f62614e8,
title = "Multiplicative relations among differences of singular moduli",
abstract = " Let \(n \in \mathbb{Z}_{>0}\). We prove that there exist a finite set \(V\) and finitely many algebraic curves \(T_1, \ldots, T_k\) with the following property: if \((x_1, \ldots, x_n, y)\) is an \((n+1)\)-tuple of pairwise distinct singular moduli such that \(\prod_{i=1}^n (x_i - y)^{a_i}=1\) for some \(a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}\), then \((x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k\). Further, the curves \(T_1, \ldots, T_k\) may be determined explicitly for a given \(n\). ",
keywords = "math.NT",
author = "Vahagn Aslanyan and Sebastian Eterovi{\'c} and Guy Fowler",
note = "36 pages",
year = "2024",
month = dec,
day = "20",
doi = "10.2422/2036-2145.202309_020",
language = "English",
journal = "Annali della Scuola normale superiore di Pisa - Classe di scienze",
issn = "0391-173X",
publisher = "Scuola Normale Superiore",

}

Download

TY - JOUR

T1 - Multiplicative relations among differences of singular moduli

AU - Aslanyan, Vahagn

AU - Eterović, Sebastian

AU - Fowler, Guy

N1 - 36 pages

PY - 2024/12/20

Y1 - 2024/12/20

N2 - Let \(n \in \mathbb{Z}_{>0}\). We prove that there exist a finite set \(V\) and finitely many algebraic curves \(T_1, \ldots, T_k\) with the following property: if \((x_1, \ldots, x_n, y)\) is an \((n+1)\)-tuple of pairwise distinct singular moduli such that \(\prod_{i=1}^n (x_i - y)^{a_i}=1\) for some \(a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}\), then \((x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k\). Further, the curves \(T_1, \ldots, T_k\) may be determined explicitly for a given \(n\).

AB - Let \(n \in \mathbb{Z}_{>0}\). We prove that there exist a finite set \(V\) and finitely many algebraic curves \(T_1, \ldots, T_k\) with the following property: if \((x_1, \ldots, x_n, y)\) is an \((n+1)\)-tuple of pairwise distinct singular moduli such that \(\prod_{i=1}^n (x_i - y)^{a_i}=1\) for some \(a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}\), then \((x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k\). Further, the curves \(T_1, \ldots, T_k\) may be determined explicitly for a given \(n\).

KW - math.NT

U2 - 10.2422/2036-2145.202309_020

DO - 10.2422/2036-2145.202309_020

M3 - Article

JO - Annali della Scuola normale superiore di Pisa - Classe di scienze

JF - Annali della Scuola normale superiore di Pisa - Classe di scienze

SN - 0391-173X

ER -