Details
Original language | English |
---|---|
Article number | 105845 |
Journal | Applied clay science |
Volume | 198 |
Early online date | 26 Sept 2020 |
Publication status | Published - 15 Nov 2020 |
Abstract
Clay minerals and Fe- and Al-oxyhydroxides are considered as the most important materials for the formation of microaggregate building units in soils. The mode of aggregation and the resulting structure and stability are largely determined by their size, aspect ratio (AR), differences in surface charge (SC), and mixing ratio. Here, the impact of these parameters on the formation of microaggregate building units (BUs) was elucidated with a mechanistic model, i.e. using a twophase cellular automaton method, in which prototypes of illite and goethite were implemented. The simulations allowed assessing the formation of particle arrangements during aggregation, moreover building unit diameters, and the number of discrete particles. The contact area between particles was evaluated as a quantitative measure for stability. Homoaggregation of illite under the sole influence of attracting van der Waals forces enabling face-to-face as well as edge-to-face contacts, resulted in compact structures with a small mean diameter and specific surface area. In contrast, electrostatic attraction between negatively charged faces and positively charged edges favored formation of larger card-house structures, where low contact areas indicated the low stability of the resulting BUs. At constant AR, homoaggregation of illite of different particle size led to BUs of different stability, more precisely smaller particle sizes led to more stable BUs. Variation of the AR of illite, while keeping the particle size constant, revealed that most stable BUs arose from illite with smallest AR. Shielding of coarse goethite particles due to attachment of fine illite with negatively charged edges increased the number of discrete fine illite particles not aggregated. Aggregation of illite with positively charged edges was in fundamental difference to results from simulations with negative edges because of electrostatic attraction between illite particles. The simulation setting, without using fitting parameters resulted in an appropriate approximation of laboratory findings. The simulation clearly facilitated the understanding of microaggregate building unit formation and stability by illuminating turnover dynamics and provision of quantitative data.
Keywords
- Aspect ratio, Cellular automaton, Goethite, Illite, Mechanistic modeling, Microaggregate building units
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geology
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Applied clay science, Vol. 198, 105845, 15.11.2020.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Microaggregation of goethite and illite evaluated by mechanistic modeling
AU - Zech, Simon
AU - Dultz, Stefan
AU - Guggenberger, Georg
AU - Prechtel, Alexander
AU - Ray, Nadja
N1 - Funding information: This study was performed within the framework of the research unit RU 2179 “ MAD Soil – Microaggregates: Formation and turnover of the structural building blocks of soils” ( DFG RU 2179 ) through projects PR 1610/2-2 , RA 2740/1-2 and GU 406/29-1,2 of the Deutsche Forschungsgemeinschaft .
PY - 2020/11/15
Y1 - 2020/11/15
N2 - Clay minerals and Fe- and Al-oxyhydroxides are considered as the most important materials for the formation of microaggregate building units in soils. The mode of aggregation and the resulting structure and stability are largely determined by their size, aspect ratio (AR), differences in surface charge (SC), and mixing ratio. Here, the impact of these parameters on the formation of microaggregate building units (BUs) was elucidated with a mechanistic model, i.e. using a twophase cellular automaton method, in which prototypes of illite and goethite were implemented. The simulations allowed assessing the formation of particle arrangements during aggregation, moreover building unit diameters, and the number of discrete particles. The contact area between particles was evaluated as a quantitative measure for stability. Homoaggregation of illite under the sole influence of attracting van der Waals forces enabling face-to-face as well as edge-to-face contacts, resulted in compact structures with a small mean diameter and specific surface area. In contrast, electrostatic attraction between negatively charged faces and positively charged edges favored formation of larger card-house structures, where low contact areas indicated the low stability of the resulting BUs. At constant AR, homoaggregation of illite of different particle size led to BUs of different stability, more precisely smaller particle sizes led to more stable BUs. Variation of the AR of illite, while keeping the particle size constant, revealed that most stable BUs arose from illite with smallest AR. Shielding of coarse goethite particles due to attachment of fine illite with negatively charged edges increased the number of discrete fine illite particles not aggregated. Aggregation of illite with positively charged edges was in fundamental difference to results from simulations with negative edges because of electrostatic attraction between illite particles. The simulation setting, without using fitting parameters resulted in an appropriate approximation of laboratory findings. The simulation clearly facilitated the understanding of microaggregate building unit formation and stability by illuminating turnover dynamics and provision of quantitative data.
AB - Clay minerals and Fe- and Al-oxyhydroxides are considered as the most important materials for the formation of microaggregate building units in soils. The mode of aggregation and the resulting structure and stability are largely determined by their size, aspect ratio (AR), differences in surface charge (SC), and mixing ratio. Here, the impact of these parameters on the formation of microaggregate building units (BUs) was elucidated with a mechanistic model, i.e. using a twophase cellular automaton method, in which prototypes of illite and goethite were implemented. The simulations allowed assessing the formation of particle arrangements during aggregation, moreover building unit diameters, and the number of discrete particles. The contact area between particles was evaluated as a quantitative measure for stability. Homoaggregation of illite under the sole influence of attracting van der Waals forces enabling face-to-face as well as edge-to-face contacts, resulted in compact structures with a small mean diameter and specific surface area. In contrast, electrostatic attraction between negatively charged faces and positively charged edges favored formation of larger card-house structures, where low contact areas indicated the low stability of the resulting BUs. At constant AR, homoaggregation of illite of different particle size led to BUs of different stability, more precisely smaller particle sizes led to more stable BUs. Variation of the AR of illite, while keeping the particle size constant, revealed that most stable BUs arose from illite with smallest AR. Shielding of coarse goethite particles due to attachment of fine illite with negatively charged edges increased the number of discrete fine illite particles not aggregated. Aggregation of illite with positively charged edges was in fundamental difference to results from simulations with negative edges because of electrostatic attraction between illite particles. The simulation setting, without using fitting parameters resulted in an appropriate approximation of laboratory findings. The simulation clearly facilitated the understanding of microaggregate building unit formation and stability by illuminating turnover dynamics and provision of quantitative data.
KW - Aspect ratio
KW - Cellular automaton
KW - Goethite
KW - Illite
KW - Mechanistic modeling
KW - Microaggregate building units
UR - http://www.scopus.com/inward/record.url?scp=85091594807&partnerID=8YFLogxK
U2 - 10.1016/j.clay.2020.105845
DO - 10.1016/j.clay.2020.105845
M3 - Article
AN - SCOPUS:85091594807
VL - 198
JO - Applied clay science
JF - Applied clay science
SN - 0169-1317
M1 - 105845
ER -