Loading [MathJax]/extensions/tex2jax.js

Interference of clocks: A quantum twin paradox

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Sina Loriani
  • Alexander Friedrich
  • Christian Ufrecht
  • Fabio Di Pumpo
  • Sven Abend
  • Naceur Gaaloul
  • Christian Meiners
  • Christian Schubert
  • Dorothee Tell
  • Étienne Wodey
  • Wolfgang Ertmer
  • Dennis Schlippert
  • Ernst M Rasel

External Research Organisations

  • Ulm University
  • University of Queensland
  • Texas A and M University
  • German Aerospace Center (DLR)

Details

Original languageEnglish
Article numbereaax8966
JournalScience advances
Volume5
Issue number10
Early online date4 Oct 2019
Publication statusPublished - 11 Oct 2019

Abstract

The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic) and gravitational (redshift) time dilation. Hence, it is conceivable that atom interferometers measure general-relativistic time-dilation effects. In contrast to this intuition, we show that (i) closed light-pulse interferometers without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear potential. (ii) They can constitute a quantum version of the special-relativistic twin paradox. (iii) Our proposed experimental geometry for a quantum-clock interferometer isolates this effect.

ASJC Scopus subject areas

Cite this

Interference of clocks: A quantum twin paradox. / Loriani, Sina; Friedrich, Alexander; Ufrecht, Christian et al.
In: Science advances, Vol. 5, No. 10, eaax8966, 11.10.2019.

Research output: Contribution to journalArticleResearchpeer review

Loriani, S, Friedrich, A, Ufrecht, C, Di Pumpo, F, Kleinert, S, Abend, S, Gaaloul, N, Meiners, C, Schubert, C, Tell, D, Wodey, É, Zych, M, Ertmer, W, Roura, A, Schlippert, D, Schleich, WP, Rasel, EM & Giese, E 2019, 'Interference of clocks: A quantum twin paradox', Science advances, vol. 5, no. 10, eaax8966. https://doi.org/10.48550/arXiv.1905.09102, https://doi.org/10.1126/sciadv.aax8966, https://doi.org/10.15488/10475
Loriani, S., Friedrich, A., Ufrecht, C., Di Pumpo, F., Kleinert, S., Abend, S., Gaaloul, N., Meiners, C., Schubert, C., Tell, D., Wodey, É., Zych, M., Ertmer, W., Roura, A., Schlippert, D., Schleich, W. P., Rasel, E. M., & Giese, E. (2019). Interference of clocks: A quantum twin paradox. Science advances, 5(10), Article eaax8966. https://doi.org/10.48550/arXiv.1905.09102, https://doi.org/10.1126/sciadv.aax8966, https://doi.org/10.15488/10475
Loriani S, Friedrich A, Ufrecht C, Di Pumpo F, Kleinert S, Abend S et al. Interference of clocks: A quantum twin paradox. Science advances. 2019 Oct 11;5(10):eaax8966. Epub 2019 Oct 4. doi: 10.48550/arXiv.1905.09102, 10.1126/sciadv.aax8966, 10.15488/10475
Loriani, Sina ; Friedrich, Alexander ; Ufrecht, Christian et al. / Interference of clocks: A quantum twin paradox. In: Science advances. 2019 ; Vol. 5, No. 10.
Download
@article{17e07cedb49942b5af5f544b55cbe678,
title = "Interference of clocks:: A quantum twin paradox",
abstract = "The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic) and gravitational (redshift) time dilation. Hence, it is conceivable that atom interferometers measure general-relativistic time-dilation effects. In contrast to this intuition, we show that (i) closed light-pulse interferometers without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear potential. (ii) They can constitute a quantum version of the special-relativistic twin paradox. (iii) Our proposed experimental geometry for a quantum-clock interferometer isolates this effect.",
author = "Sina Loriani and Alexander Friedrich and Christian Ufrecht and {Di Pumpo}, Fabio and Stephan Kleinert and Sven Abend and Naceur Gaaloul and Christian Meiners and Christian Schubert and Dorothee Tell and {\'E}tienne Wodey and Magdalena Zych and Wolfgang Ertmer and Albert Roura and Dennis Schlippert and Schleich, {Wolfgang P} and Rasel, {Ernst M} and Enno Giese",
year = "2019",
month = oct,
day = "11",
doi = "10.48550/arXiv.1905.09102",
language = "English",
volume = "5",
number = "10",

}

Download

TY - JOUR

T1 - Interference of clocks:

T2 - A quantum twin paradox

AU - Loriani, Sina

AU - Friedrich, Alexander

AU - Ufrecht, Christian

AU - Di Pumpo, Fabio

AU - Kleinert, Stephan

AU - Abend, Sven

AU - Gaaloul, Naceur

AU - Meiners, Christian

AU - Schubert, Christian

AU - Tell, Dorothee

AU - Wodey, Étienne

AU - Zych, Magdalena

AU - Ertmer, Wolfgang

AU - Roura, Albert

AU - Schlippert, Dennis

AU - Schleich, Wolfgang P

AU - Rasel, Ernst M

AU - Giese, Enno

PY - 2019/10/11

Y1 - 2019/10/11

N2 - The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic) and gravitational (redshift) time dilation. Hence, it is conceivable that atom interferometers measure general-relativistic time-dilation effects. In contrast to this intuition, we show that (i) closed light-pulse interferometers without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear potential. (ii) They can constitute a quantum version of the special-relativistic twin paradox. (iii) Our proposed experimental geometry for a quantum-clock interferometer isolates this effect.

AB - The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic) and gravitational (redshift) time dilation. Hence, it is conceivable that atom interferometers measure general-relativistic time-dilation effects. In contrast to this intuition, we show that (i) closed light-pulse interferometers without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear potential. (ii) They can constitute a quantum version of the special-relativistic twin paradox. (iii) Our proposed experimental geometry for a quantum-clock interferometer isolates this effect.

UR - http://www.scopus.com/inward/record.url?scp=85073001654&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1905.09102

DO - 10.48550/arXiv.1905.09102

M3 - Article

C2 - 31620559

VL - 5

JO - Science advances

JF - Science advances

SN - 2375-2548

IS - 10

M1 - eaax8966

ER -