Loading [MathJax]/extensions/tex2jax.js

Human-AI Teaming in a Digital Twin Model for Virtual Product Development

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Atefeh Gooran Orimi
  • Sascha Saralajew
  • Jiatai Feng
  • Zhuoqun Dai
  • Rayen Hamlaoui
  • Timo Stauss
  • Roland Lachmayer

External Research Organisations

  • NEC Corporation

Details

Translated title of the contributionMensch-KI-Zusammenarbeit in einem Digitalen Zwillingsmodell für die virtuelle Produktentwicklung
Original languageEnglish
Pages (from-to)76-84
Number of pages9
JournalZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb
Volume120
Issue numbers1
Publication statusPublished - 27 Mar 2025

Abstract

Digital Twin Models (DTMs) are key to Industry 4.0, improving manufacturing and product development through AI. They enable real-time monitoring, predictive maintenance, and optimization across the product lifecycle. However, none human-comprehensible AI algorithms, especially deep neural networks, present challenges. In this regard, this study explores human-AI collaboration to create an AI-driven DTM for virtual product development. We propose a DTM that combines AI and expert knowledge to enable informed decision-making for product design optimization. For this, the architecture and functionality of the developed model will be first outlined, and further, the application of the model will be demonstrated in analyzing LiDAR systems.

Keywords

    Artificial Intelligence, Digital Twin Model, Human-AI Teaming, Product Design, Product Development

ASJC Scopus subject areas

Cite this

Human-AI Teaming in a Digital Twin Model for Virtual Product Development. / Orimi, Atefeh Gooran; Saralajew, Sascha; Feng, Jiatai et al.
In: ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, Vol. 120, No. s1, 27.03.2025, p. 76-84.

Research output: Contribution to journalArticleResearchpeer review

Orimi, AG, Saralajew, S, Feng, J, Dai, Z, Hamlaoui, R, Stauss, T & Lachmayer, R 2025, 'Human-AI Teaming in a Digital Twin Model for Virtual Product Development', ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, vol. 120, no. s1, pp. 76-84. https://doi.org/10.1515/zwf-2024-0141
Orimi, A. G., Saralajew, S., Feng, J., Dai, Z., Hamlaoui, R., Stauss, T., & Lachmayer, R. (2025). Human-AI Teaming in a Digital Twin Model for Virtual Product Development. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 120(s1), 76-84. https://doi.org/10.1515/zwf-2024-0141
Orimi AG, Saralajew S, Feng J, Dai Z, Hamlaoui R, Stauss T et al. Human-AI Teaming in a Digital Twin Model for Virtual Product Development. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb. 2025 Mar 27;120(s1):76-84. doi: 10.1515/zwf-2024-0141
Orimi, Atefeh Gooran ; Saralajew, Sascha ; Feng, Jiatai et al. / Human-AI Teaming in a Digital Twin Model for Virtual Product Development. In: ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb. 2025 ; Vol. 120, No. s1. pp. 76-84.
Download
@article{e1df46b25e964edb910fdb543dd39d96,
title = "Human-AI Teaming in a Digital Twin Model for Virtual Product Development",
abstract = "Digital Twin Models (DTMs) are key to Industry 4.0, improving manufacturing and product development through AI. They enable real-time monitoring, predictive maintenance, and optimization across the product lifecycle. However, none human-comprehensible AI algorithms, especially deep neural networks, present challenges. In this regard, this study explores human-AI collaboration to create an AI-driven DTM for virtual product development. We propose a DTM that combines AI and expert knowledge to enable informed decision-making for product design optimization. For this, the architecture and functionality of the developed model will be first outlined, and further, the application of the model will be demonstrated in analyzing LiDAR systems.",
keywords = "Artificial Intelligence, Digital Twin Model, Human-AI Teaming, Product Design, Product Development",
author = "Orimi, {Atefeh Gooran} and Sascha Saralajew and Jiatai Feng and Zhuoqun Dai and Rayen Hamlaoui and Timo Stauss and Roland Lachmayer",
note = "Publisher Copyright: {\textcopyright} 2025 Atefeh Gooran Orimi, Sascha Saralajew, Jiatai Feng, Zhuoqun Dai, Rayen Hamlaoui, Timo Stauss and Roland Lachmayer, publiziert von De Gruyter.",
year = "2025",
month = mar,
day = "27",
doi = "10.1515/zwf-2024-0141",
language = "English",
volume = "120",
pages = "76--84",
journal = "ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb",
issn = "0947-0085",
publisher = "de Gruyter",
number = "s1",

}

Download

TY - JOUR

T1 - Human-AI Teaming in a Digital Twin Model for Virtual Product Development

AU - Orimi, Atefeh Gooran

AU - Saralajew, Sascha

AU - Feng, Jiatai

AU - Dai, Zhuoqun

AU - Hamlaoui, Rayen

AU - Stauss, Timo

AU - Lachmayer, Roland

N1 - Publisher Copyright: © 2025 Atefeh Gooran Orimi, Sascha Saralajew, Jiatai Feng, Zhuoqun Dai, Rayen Hamlaoui, Timo Stauss and Roland Lachmayer, publiziert von De Gruyter.

PY - 2025/3/27

Y1 - 2025/3/27

N2 - Digital Twin Models (DTMs) are key to Industry 4.0, improving manufacturing and product development through AI. They enable real-time monitoring, predictive maintenance, and optimization across the product lifecycle. However, none human-comprehensible AI algorithms, especially deep neural networks, present challenges. In this regard, this study explores human-AI collaboration to create an AI-driven DTM for virtual product development. We propose a DTM that combines AI and expert knowledge to enable informed decision-making for product design optimization. For this, the architecture and functionality of the developed model will be first outlined, and further, the application of the model will be demonstrated in analyzing LiDAR systems.

AB - Digital Twin Models (DTMs) are key to Industry 4.0, improving manufacturing and product development through AI. They enable real-time monitoring, predictive maintenance, and optimization across the product lifecycle. However, none human-comprehensible AI algorithms, especially deep neural networks, present challenges. In this regard, this study explores human-AI collaboration to create an AI-driven DTM for virtual product development. We propose a DTM that combines AI and expert knowledge to enable informed decision-making for product design optimization. For this, the architecture and functionality of the developed model will be first outlined, and further, the application of the model will be demonstrated in analyzing LiDAR systems.

KW - Artificial Intelligence

KW - Digital Twin Model

KW - Human-AI Teaming

KW - Product Design

KW - Product Development

UR - http://www.scopus.com/inward/record.url?scp=105004686224&partnerID=8YFLogxK

U2 - 10.1515/zwf-2024-0141

DO - 10.1515/zwf-2024-0141

M3 - Article

AN - SCOPUS:105004686224

VL - 120

SP - 76

EP - 84

JO - ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb

JF - ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb

SN - 0947-0085

IS - s1

ER -