High performance computing for modelling of stereolithography process

Research output: ThesisDoctoral thesis

Authors

  • Sandeep Kumar

Research Organisations

View graph of relations

Details

Original languageEnglish
QualificationDoctor of Engineering
Awarding Institution
Supervised by
Date of Award29 Mar 2022
Place of PublicationHannover
Electronic ISBNs9783941302464
Publication statusPublished - 2022

Abstract

In this dissertation, a state-of-the-art 3D computational model has been developed for Stereolithography process to investigate the evolution of properties in a multi-physics framework using Stabilized Optimal Transportation Meshfree (OTM) method based on a continuum approach. In order to accelerate the computational performance, HPC framework of the OTM method has been developed. Stereolithography process is a complex process in the sense that several physical processes are involved therein. In this work, some of the key phenomena incorporated in the modeling framework are highly coupled thermo-chemo-mechanical evolution of resin properties and propagation of the UV laser through the resin. The photopolymerization is driven by the interaction of fluid resin with the UV light and consequently generates heat due to its exothermic nature and resulting in building up of mechanical stresses. The numerical and geometrical complexities arising from these phenomena pose serious challenges and complications in grid-based techniques such as Finite element (FE). Generally, such issues are referred to as mesh distortion. OTM based computational modeling is one solution to these issues. The method is quite new in the field of Stereolithography simulation and it is efficient in capturing the deformations generated during printing process. Moreover, parallelization using MPI with an objective for scalability on large scale CPU clusters reduces the computational efforts. And, the obtained results leads to highly scalable results. The developed tool can be employed to optimize the material and process parameters during the printing process to achieve improved accuracy in the printed parts.

Cite this

High performance computing for modelling of stereolithography process. / Kumar, Sandeep.
Hannover, 2022. 98 p.

Research output: ThesisDoctoral thesis

Kumar, S 2022, 'High performance computing for modelling of stereolithography process', Doctor of Engineering, Leibniz University Hannover, Hannover. https://doi.org/10.15488/12538
Kumar, S. (2022). High performance computing for modelling of stereolithography process. [Doctoral thesis, Leibniz University Hannover]. https://doi.org/10.15488/12538
Kumar S. High performance computing for modelling of stereolithography process. Hannover, 2022. 98 p. doi: 10.15488/12538
Download
@phdthesis{709246eb8bec4cbc8d5b1f49edc2ba8e,
title = "High performance computing for modelling of stereolithography process",
abstract = "In this dissertation, a state-of-the-art 3D computational model has been developed for Stereolithography process to investigate the evolution of properties in a multi-physics framework using Stabilized Optimal Transportation Meshfree (OTM) method based on a continuum approach. In order to accelerate the computational performance, HPC framework of the OTM method has been developed. Stereolithography process is a complex process in the sense that several physical processes are involved therein. In this work, some of the key phenomena incorporated in the modeling framework are highly coupled thermo-chemo-mechanical evolution of resin properties and propagation of the UV laser through the resin. The photopolymerization is driven by the interaction of fluid resin with the UV light and consequently generates heat due to its exothermic nature and resulting in building up of mechanical stresses. The numerical and geometrical complexities arising from these phenomena pose serious challenges and complications in grid-based techniques such as Finite element (FE). Generally, such issues are referred to as mesh distortion. OTM based computational modeling is one solution to these issues. The method is quite new in the field of Stereolithography simulation and it is efficient in capturing the deformations generated during printing process. Moreover, parallelization using MPI with an objective for scalability on large scale CPU clusters reduces the computational efforts. And, the obtained results leads to highly scalable results. The developed tool can be employed to optimize the material and process parameters during the printing process to achieve improved accuracy in the printed parts.",
author = "Sandeep Kumar",
note = "Doctoral thesis",
year = "2022",
doi = "10.15488/12538",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - High performance computing for modelling of stereolithography process

AU - Kumar, Sandeep

N1 - Doctoral thesis

PY - 2022

Y1 - 2022

N2 - In this dissertation, a state-of-the-art 3D computational model has been developed for Stereolithography process to investigate the evolution of properties in a multi-physics framework using Stabilized Optimal Transportation Meshfree (OTM) method based on a continuum approach. In order to accelerate the computational performance, HPC framework of the OTM method has been developed. Stereolithography process is a complex process in the sense that several physical processes are involved therein. In this work, some of the key phenomena incorporated in the modeling framework are highly coupled thermo-chemo-mechanical evolution of resin properties and propagation of the UV laser through the resin. The photopolymerization is driven by the interaction of fluid resin with the UV light and consequently generates heat due to its exothermic nature and resulting in building up of mechanical stresses. The numerical and geometrical complexities arising from these phenomena pose serious challenges and complications in grid-based techniques such as Finite element (FE). Generally, such issues are referred to as mesh distortion. OTM based computational modeling is one solution to these issues. The method is quite new in the field of Stereolithography simulation and it is efficient in capturing the deformations generated during printing process. Moreover, parallelization using MPI with an objective for scalability on large scale CPU clusters reduces the computational efforts. And, the obtained results leads to highly scalable results. The developed tool can be employed to optimize the material and process parameters during the printing process to achieve improved accuracy in the printed parts.

AB - In this dissertation, a state-of-the-art 3D computational model has been developed for Stereolithography process to investigate the evolution of properties in a multi-physics framework using Stabilized Optimal Transportation Meshfree (OTM) method based on a continuum approach. In order to accelerate the computational performance, HPC framework of the OTM method has been developed. Stereolithography process is a complex process in the sense that several physical processes are involved therein. In this work, some of the key phenomena incorporated in the modeling framework are highly coupled thermo-chemo-mechanical evolution of resin properties and propagation of the UV laser through the resin. The photopolymerization is driven by the interaction of fluid resin with the UV light and consequently generates heat due to its exothermic nature and resulting in building up of mechanical stresses. The numerical and geometrical complexities arising from these phenomena pose serious challenges and complications in grid-based techniques such as Finite element (FE). Generally, such issues are referred to as mesh distortion. OTM based computational modeling is one solution to these issues. The method is quite new in the field of Stereolithography simulation and it is efficient in capturing the deformations generated during printing process. Moreover, parallelization using MPI with an objective for scalability on large scale CPU clusters reduces the computational efforts. And, the obtained results leads to highly scalable results. The developed tool can be employed to optimize the material and process parameters during the printing process to achieve improved accuracy in the printed parts.

U2 - 10.15488/12538

DO - 10.15488/12538

M3 - Doctoral thesis

CY - Hannover

ER -

By the same author(s)