Details
Original language | English |
---|---|
Pages (from-to) | 15932–16034 |
Number of pages | 103 |
Journal | International Mathematics Research Notices |
Volume | 2022 |
Issue number | 20 |
Early online date | 10 Jul 2021 |
Publication status | Published - Oct 2022 |
Abstract
ASJC Scopus subject areas
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Mathematics Research Notices, Vol. 2022, No. 20, 10.2022, p. 15932–16034.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Existence of Equivariant Models of Spherical Varieties and Other G-varieties
AU - Borovoi, Mikhail
AU - Gagliardi, Giuliano Claudio
N1 - Publisher Copyright: © The Author(s) 2021. Published by Oxford University Press. All rights reserved.
PY - 2022/10
Y1 - 2022/10
N2 - Let k0 be a field of characteristic 0 with algebraic closure k. Let G be a connected reductive k-group, and let Y be a spherical variety over k (a spherical homogeneous space or a spherical embedding). Let G0 be a k0-model (k0-form) of G. We give necessary and sufficient conditions for the existence of a G0-equivariant k0-model of Y.
AB - Let k0 be a field of characteristic 0 with algebraic closure k. Let G be a connected reductive k-group, and let Y be a spherical variety over k (a spherical homogeneous space or a spherical embedding). Let G0 be a k0-model (k0-form) of G. We give necessary and sufficient conditions for the existence of a G0-equivariant k0-model of Y.
UR - http://www.scopus.com/inward/record.url?scp=85157964415&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1810.08960
DO - 10.48550/arXiv.1810.08960
M3 - Article
VL - 2022
SP - 15932
EP - 16034
JO - International Mathematics Research Notices
JF - International Mathematics Research Notices
SN - 1073-7928
IS - 20
ER -