Details
Original language | English |
---|---|
Pages (from-to) | G361-G369 |
Journal | American Journal of Physiology - Gastrointestinal and Liver Physiology |
Volume | 318 |
Issue number | 2 |
Publication status | Published - Feb 2020 |
Externally published | Yes |
Abstract
Longer colonic transit time and hard stools are associated with increased gut microbiota diversity. Here, we investigate to what extent quantitative measures of (segmental) colonic transit time were related to gut microbiota composition, microbial metabolites, and gut-related parameters in a human cross-sectional study. Using radiopaque markers, (segmental) colonic transit time (CTT) was measured in 48 lean/overweight participants with long colonic transit but without constipation. Fecal microbiota composition was determined using 16S rRNA gene amplicon sequencing. Associations between gastrointestinal transit (segmental CTT and stool frequency and consistency), microbiota diversity and composition, microbial metabolites [short-chain fatty acids (SCFA), branched-chain fatty acids, and breath hydrogen], habitual diet, and gut-related host parameters [lipopolysaccharide-binding protein (LBP) and fecal calprotectin] were investigated using univariate and multivariate approaches. Long descending (i.e., distal) colonic transit was associated with increased microbial α-diversity but not with stool consistency. Using unweighted and weighted UniFrac distance, microbiota variation was not related to (segmental) CTT but to demographics, diet, plasma LBP, and fecal calprotectin. Bray–Curtis dissimilarity related only to stool consistency. Rectosigmoid and descending colonic transit were negatively associated with fecal SCFA and plasma acetate, respectively. This study suggests that the distal colon transit may affect not only microbiota diversity but also microbial metabolism. NEW & NOTEWORTHY We extend previous findings showing that long distal colonic transit time influences microbial diversification and fermentation, whereas stool consistency is related to microbiota composition in humans with a long colonic transit. This study puts the importance of the (distal) colonic site in microbiota ecology forward, which should be considered in future therapeutic studies targeting, for instance, short-chain fatty acid production to improve metabolic health.
Keywords
- Gastrointestinal transit, Gut microbiota, Short-chain fatty acids, Stool consistency
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Physiology
- Medicine(all)
- Hepatology
- Medicine(all)
- Gastroenterology
- Medicine(all)
- Physiology (medical)
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: American Journal of Physiology - Gastrointestinal and Liver Physiology, Vol. 318, No. 2, 02.2020, p. G361-G369.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Distal colonic transit is linked to gut microbiota diversity and microbial fermentation in humans with slow colonic transit
AU - Müller, M.
AU - Hermes, G.D.A.
AU - Canfora, E.E.
AU - Smidt, H.
AU - Masclee, A.A.M.
AU - Zoetendal, E.G.
AU - Blaak, E.E.
N1 - Funding Information: The research is funded by Top Institute Food and Nutrition (project PM001), a public private partnership on precompetitive research in food and nutrition.
PY - 2020/2
Y1 - 2020/2
N2 - Longer colonic transit time and hard stools are associated with increased gut microbiota diversity. Here, we investigate to what extent quantitative measures of (segmental) colonic transit time were related to gut microbiota composition, microbial metabolites, and gut-related parameters in a human cross-sectional study. Using radiopaque markers, (segmental) colonic transit time (CTT) was measured in 48 lean/overweight participants with long colonic transit but without constipation. Fecal microbiota composition was determined using 16S rRNA gene amplicon sequencing. Associations between gastrointestinal transit (segmental CTT and stool frequency and consistency), microbiota diversity and composition, microbial metabolites [short-chain fatty acids (SCFA), branched-chain fatty acids, and breath hydrogen], habitual diet, and gut-related host parameters [lipopolysaccharide-binding protein (LBP) and fecal calprotectin] were investigated using univariate and multivariate approaches. Long descending (i.e., distal) colonic transit was associated with increased microbial α-diversity but not with stool consistency. Using unweighted and weighted UniFrac distance, microbiota variation was not related to (segmental) CTT but to demographics, diet, plasma LBP, and fecal calprotectin. Bray–Curtis dissimilarity related only to stool consistency. Rectosigmoid and descending colonic transit were negatively associated with fecal SCFA and plasma acetate, respectively. This study suggests that the distal colon transit may affect not only microbiota diversity but also microbial metabolism. NEW & NOTEWORTHY We extend previous findings showing that long distal colonic transit time influences microbial diversification and fermentation, whereas stool consistency is related to microbiota composition in humans with a long colonic transit. This study puts the importance of the (distal) colonic site in microbiota ecology forward, which should be considered in future therapeutic studies targeting, for instance, short-chain fatty acid production to improve metabolic health.
AB - Longer colonic transit time and hard stools are associated with increased gut microbiota diversity. Here, we investigate to what extent quantitative measures of (segmental) colonic transit time were related to gut microbiota composition, microbial metabolites, and gut-related parameters in a human cross-sectional study. Using radiopaque markers, (segmental) colonic transit time (CTT) was measured in 48 lean/overweight participants with long colonic transit but without constipation. Fecal microbiota composition was determined using 16S rRNA gene amplicon sequencing. Associations between gastrointestinal transit (segmental CTT and stool frequency and consistency), microbiota diversity and composition, microbial metabolites [short-chain fatty acids (SCFA), branched-chain fatty acids, and breath hydrogen], habitual diet, and gut-related host parameters [lipopolysaccharide-binding protein (LBP) and fecal calprotectin] were investigated using univariate and multivariate approaches. Long descending (i.e., distal) colonic transit was associated with increased microbial α-diversity but not with stool consistency. Using unweighted and weighted UniFrac distance, microbiota variation was not related to (segmental) CTT but to demographics, diet, plasma LBP, and fecal calprotectin. Bray–Curtis dissimilarity related only to stool consistency. Rectosigmoid and descending colonic transit were negatively associated with fecal SCFA and plasma acetate, respectively. This study suggests that the distal colon transit may affect not only microbiota diversity but also microbial metabolism. NEW & NOTEWORTHY We extend previous findings showing that long distal colonic transit time influences microbial diversification and fermentation, whereas stool consistency is related to microbiota composition in humans with a long colonic transit. This study puts the importance of the (distal) colonic site in microbiota ecology forward, which should be considered in future therapeutic studies targeting, for instance, short-chain fatty acid production to improve metabolic health.
KW - Gastrointestinal transit
KW - Gut microbiota
KW - Short-chain fatty acids
KW - Stool consistency
UR - http://www.scopus.com/inward/record.url?scp=85079019275&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00283.2019
DO - 10.1152/ajpgi.00283.2019
M3 - Article
VL - 318
SP - G361-G369
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
SN - 0193-1857
IS - 2
ER -