Details
Original language | English |
---|---|
Pages (from-to) | 355-364 |
Number of pages | 10 |
Journal | Molecular Plant Pathology |
Volume | 7 |
Issue number | 5 |
Publication status | Published - 6 Jul 2006 |
Externally published | Yes |
Abstract
The plant pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000 is a key model organism to study plant-pathogen interactions. We realized that two versions of this strain, which carry plasmids of different sizes, exist in our strain collections. The difference was located to a 9.4-kb deletion within the larger of the two endogenous plasmids encompassing the partitioning genes parA and parB and a putative mobile element encoding the type III effector hopAM1-2 (formerly avrPpiB2). Both plasmid variants are lost in similar frequency, indicating that the partitioning genes are not essential for stability of the plasmid. In addition, the deletion derivative strain DC3001 exhibited the same virulence towards Arabidopsis as strain DC3000. The deletion site in DC3001 is located immediately adjacent to a putative transposon that carries the effector hopX1 (formerly avrPphE), suggesting that the deletion originated from an aberrant transposition event of this element. By tagging the hopX1 transposon with an antibiotic resistance cassette on a suicide plasmid it was shown that the element is functional and produces a target site duplication of 5 bp. The plasmid also integrated into the chromosome in several cases, possibly mediated by one-ended transposition of the hopX1 transposon. This is the first report that describes an active effector-transposon. Comparison of DC3000 strains from several sources revealed that strains exist with differences in the endogenous plasmid composition.
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Molecular Biology
- Agricultural and Biological Sciences(all)
- Agronomy and Crop Science
- Agricultural and Biological Sciences(all)
- Soil Science
- Agricultural and Biological Sciences(all)
- Plant Science
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Molecular Plant Pathology, Vol. 7, No. 5, 06.07.2006, p. 355-364.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Different versions of Pseudomonas syringae pv. tomato DC3000 exist due to the activity of an effector transposon
AU - Landgraf, Angelika
AU - Weingart, Helge
AU - Tsiamis, George
AU - Boch, Jens
N1 - Copyright: Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006/7/6
Y1 - 2006/7/6
N2 - The plant pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000 is a key model organism to study plant-pathogen interactions. We realized that two versions of this strain, which carry plasmids of different sizes, exist in our strain collections. The difference was located to a 9.4-kb deletion within the larger of the two endogenous plasmids encompassing the partitioning genes parA and parB and a putative mobile element encoding the type III effector hopAM1-2 (formerly avrPpiB2). Both plasmid variants are lost in similar frequency, indicating that the partitioning genes are not essential for stability of the plasmid. In addition, the deletion derivative strain DC3001 exhibited the same virulence towards Arabidopsis as strain DC3000. The deletion site in DC3001 is located immediately adjacent to a putative transposon that carries the effector hopX1 (formerly avrPphE), suggesting that the deletion originated from an aberrant transposition event of this element. By tagging the hopX1 transposon with an antibiotic resistance cassette on a suicide plasmid it was shown that the element is functional and produces a target site duplication of 5 bp. The plasmid also integrated into the chromosome in several cases, possibly mediated by one-ended transposition of the hopX1 transposon. This is the first report that describes an active effector-transposon. Comparison of DC3000 strains from several sources revealed that strains exist with differences in the endogenous plasmid composition.
AB - The plant pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000 is a key model organism to study plant-pathogen interactions. We realized that two versions of this strain, which carry plasmids of different sizes, exist in our strain collections. The difference was located to a 9.4-kb deletion within the larger of the two endogenous plasmids encompassing the partitioning genes parA and parB and a putative mobile element encoding the type III effector hopAM1-2 (formerly avrPpiB2). Both plasmid variants are lost in similar frequency, indicating that the partitioning genes are not essential for stability of the plasmid. In addition, the deletion derivative strain DC3001 exhibited the same virulence towards Arabidopsis as strain DC3000. The deletion site in DC3001 is located immediately adjacent to a putative transposon that carries the effector hopX1 (formerly avrPphE), suggesting that the deletion originated from an aberrant transposition event of this element. By tagging the hopX1 transposon with an antibiotic resistance cassette on a suicide plasmid it was shown that the element is functional and produces a target site duplication of 5 bp. The plasmid also integrated into the chromosome in several cases, possibly mediated by one-ended transposition of the hopX1 transposon. This is the first report that describes an active effector-transposon. Comparison of DC3000 strains from several sources revealed that strains exist with differences in the endogenous plasmid composition.
UR - http://www.scopus.com/inward/record.url?scp=33748354672&partnerID=8YFLogxK
U2 - 10.1111/j.1364-3703.2006.00343.x
DO - 10.1111/j.1364-3703.2006.00343.x
M3 - Article
AN - SCOPUS:33748354672
VL - 7
SP - 355
EP - 364
JO - Molecular Plant Pathology
JF - Molecular Plant Pathology
SN - 1464-6722
IS - 5
ER -