Constraints on the cosmic expansion history from GWTC-3

Research output: Contribution to journalArticleResearchpeer review

Authors

  • The LIGO Scientific Collaboration
  • The Virgo Collaboration
  • the KAGRA Collaboration
  • M. Carlassara
  • K. Danzmann
  • M. Heurs
  • A. Hreibi
  • N. Knust
  • J. Lehmann
  • D. Wilken
  • B. Willke
  • D. S. Wu
  • T. Klinger
  • P. Li
  • H. Pham
  • C. Affeldt
  • F. Bergamin
  • A. Bisht
  • N. Bode
  • P. Booker
  • M. Brinkmann
  • N. Gohlke
  • A. Heidt
  • J. Heinze
  • S. Hochheim
  • W. Kastaun
  • R. Kirchhoff
  • P. Koch
  • N. Koper
  • V. Kringel
  • G. Kuehn
  • S. Leavey
  • J. D. Lough
  • M. Matiushechkina
  • M. Mehmet
  • F. Meylahn
  • N. Mukund
  • S. L. Nadji
  • M. Nery
  • F. Ohme
  • M. Schneewind
  • B. W. Schulte
  • B. F. Schutz
  • Y. Setyawati
  • J. Venneberg
  • J. von Wrangel
  • M. Weinert
  • F. Wellmann
  • Peter Weßels
  • J. Woehler
  • Jonas Junker

External Research Organisations

  • Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
  • Maastricht University
  • Universität Hamburg
  • University of Cambridge
  • Wuhan University
  • LIGO Laboratory
  • Utrecht University
  • Cardiff University
View graph of relations

Details

Original languageEnglish
Article number76
JournalAstrophysical Journal
Volume949
Issue number2
Publication statusPublished - 7 Jun 2023

Abstract

We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter \(H(z)\), including its current value, the Hubble constant \(H_0\). Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and \(H(z)\). The source mass distribution displays a peak around \(34\, {\rm M_\odot}\), followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a \(H(z)\) measurement, yielding \(H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}}\) (\(68\%\) credible interval) when combined with the \(H_0\) measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the \(H_0\) estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of \(H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}}\) with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent \(H_0\) studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about \(H_0\)) is the well-localized event GW190814.

Keywords

    astro-ph.CO, gr-qc, Gravitational wave astronomy, Gravitational waves, Gravitational wave sources

ASJC Scopus subject areas

Cite this

Constraints on the cosmic expansion history from GWTC-3. / The LIGO Scientific Collaboration; The Virgo Collaboration; the KAGRA Collaboration et al.
In: Astrophysical Journal, Vol. 949, No. 2, 76, 07.06.2023.

Research output: Contribution to journalArticleResearchpeer review

The LIGO Scientific Collaboration, The Virgo Collaboration, the KAGRA Collaboration, Carlassara, M, Danzmann, K, Heurs, M, Hreibi, A, Knust, N, Lehmann, J, Wilken, D, Willke, B, Wu, DS, Klinger, T, Li, P, Pham, H, Affeldt, C, Bergamin, F, Bisht, A, Bode, N, Booker, P, Brinkmann, M, Gohlke, N, Heidt, A, Heinze, J, Hochheim, S, Kastaun, W, Kirchhoff, R, Koch, P, Koper, N, Kringel, V, Kuehn, G, Leavey, S, Lough, JD, Matiushechkina, M, Mehmet, M, Meylahn, F, Mukund, N, Nadji, SL, Nery, M, Ohme, F, Schneewind, M, Schulte, BW, Schutz, BF, Setyawati, Y, Venneberg, J, von Wrangel, J, Weinert, M, Wellmann, F, Weßels, P, Woehler, J & Junker, J 2023, 'Constraints on the cosmic expansion history from GWTC-3', Astrophysical Journal, vol. 949, no. 2, 76. https://doi.org/10.3847/1538-4357/ac74bb
The LIGO Scientific Collaboration, The Virgo Collaboration, the KAGRA Collaboration, Carlassara, M., Danzmann, K., Heurs, M., Hreibi, A., Knust, N., Lehmann, J., Wilken, D., Willke, B., Wu, D. S., Klinger, T., Li, P., Pham, H., Affeldt, C., Bergamin, F., Bisht, A., Bode, N., ... Junker, J. (2023). Constraints on the cosmic expansion history from GWTC-3. Astrophysical Journal, 949(2), Article 76. https://doi.org/10.3847/1538-4357/ac74bb
The LIGO Scientific Collaboration, The Virgo Collaboration, the KAGRA Collaboration, Carlassara M, Danzmann K, Heurs M et al. Constraints on the cosmic expansion history from GWTC-3. Astrophysical Journal. 2023 Jun 7;949(2):76. doi: 10.3847/1538-4357/ac74bb
The LIGO Scientific Collaboration ; The Virgo Collaboration ; the KAGRA Collaboration et al. / Constraints on the cosmic expansion history from GWTC-3. In: Astrophysical Journal. 2023 ; Vol. 949, No. 2.
Download
@article{1958d3b528c849899693df5c25fc01f2,
title = "Constraints on the cosmic expansion history from GWTC-3",
abstract = " We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter \(H(z)\), including its current value, the Hubble constant \(H_0\). Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and \(H(z)\). The source mass distribution displays a peak around \(34\, {\rm M_\odot}\), followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a \(H(z)\) measurement, yielding \(H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}}\) (\(68\%\) credible interval) when combined with the \(H_0\) measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the \(H_0\) estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of \(H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}}\) with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent \(H_0\) studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about \(H_0\)) is the well-localized event GW190814. ",
keywords = "astro-ph.CO, gr-qc, Gravitational wave astronomy, Gravitational waves, Gravitational wave sources",
author = "{The LIGO Scientific Collaboration} and {The Virgo Collaboration} and {the KAGRA Collaboration} and Adya, {V. B.} and S. Bose and Brown, {D. D.} and M. Carlassara and C. Chatterjee and X. Chen and Y.-B. Chen and Y.-R. Chen and H. Cheng and Choudhary, {R. K.} and S. Danilishin and K. Danzmann and H.-K. Guo and H. Hansen and J. Hennig and M. Heurs and A. Hreibi and H{\"u}bner, {M. T.} and K. Isleif and N. Knust and Lang, {R. N.} and Lee, {H. M.} and Lee, {H. W.} and J. Lehmann and J. Li and X. Li and H. L{\"u}ck and A. More and T. Nguyen and L. Richardson and Rose, {C. A.} and S. Roy and Sanders, {J. R.} and P. Schmidt and S. Schmidt and L. Sun and D. Wilken and B. Willke and Wu, {D. S.} and H. Wu and K. Yamamoto and H. Zhang and L. Zhang and R. Zhang and Y. Zhang and Z. Zhou and Zhu, {X. J.} and T. Klinger and P. Li and H. Pham and C. Affeldt and F. Bergamin and A. Bisht and N. Bode and P. Booker and M. Brinkmann and N. Gohlke and A. Heidt and J. Heinze and S. Hochheim and W. Kastaun and R. Kirchhoff and P. Koch and N. Koper and V. Kringel and G. Kuehn and S. Leavey and Lough, {J. D.} and M. Matiushechkina and M. Mehmet and F. Meylahn and N. Mukund and Nadji, {S. L.} and M. Nery and F. Ohme and M. Schneewind and Schulte, {B. W.} and Schutz, {B. F.} and Y. Setyawati and J. Venneberg and {von Wrangel}, J. and M. Weinert and F. Wellmann and Peter We{\ss}els and J. Woehler and Jonas Junker",
year = "2023",
month = jun,
day = "7",
doi = "10.3847/1538-4357/ac74bb",
language = "English",
volume = "949",
journal = "Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing Ltd.",
number = "2",

}

Download

TY - JOUR

T1 - Constraints on the cosmic expansion history from GWTC-3

AU - The LIGO Scientific Collaboration

AU - The Virgo Collaboration

AU - the KAGRA Collaboration

AU - Adya, V. B.

AU - Bose, S.

AU - Brown, D. D.

AU - Carlassara, M.

AU - Chatterjee, C.

AU - Chen, X.

AU - Chen, Y.-B.

AU - Chen, Y.-R.

AU - Cheng, H.

AU - Choudhary, R. K.

AU - Danilishin, S.

AU - Danzmann, K.

AU - Guo, H.-K.

AU - Hansen, H.

AU - Hennig, J.

AU - Heurs, M.

AU - Hreibi, A.

AU - Hübner, M. T.

AU - Isleif, K.

AU - Knust, N.

AU - Lang, R. N.

AU - Lee, H. M.

AU - Lee, H. W.

AU - Lehmann, J.

AU - Li, J.

AU - Li, X.

AU - Lück, H.

AU - More, A.

AU - Nguyen, T.

AU - Richardson, L.

AU - Rose, C. A.

AU - Roy, S.

AU - Sanders, J. R.

AU - Schmidt, P.

AU - Schmidt, S.

AU - Sun, L.

AU - Wilken, D.

AU - Willke, B.

AU - Wu, D. S.

AU - Wu, H.

AU - Yamamoto, K.

AU - Zhang, H.

AU - Zhang, L.

AU - Zhang, R.

AU - Zhang, Y.

AU - Zhou, Z.

AU - Zhu, X. J.

AU - Klinger, T.

AU - Li, P.

AU - Pham, H.

AU - Affeldt, C.

AU - Bergamin, F.

AU - Bisht, A.

AU - Bode, N.

AU - Booker, P.

AU - Brinkmann, M.

AU - Gohlke, N.

AU - Heidt, A.

AU - Heinze, J.

AU - Hochheim, S.

AU - Kastaun, W.

AU - Kirchhoff, R.

AU - Koch, P.

AU - Koper, N.

AU - Kringel, V.

AU - Kuehn, G.

AU - Leavey, S.

AU - Lough, J. D.

AU - Matiushechkina, M.

AU - Mehmet, M.

AU - Meylahn, F.

AU - Mukund, N.

AU - Nadji, S. L.

AU - Nery, M.

AU - Ohme, F.

AU - Schneewind, M.

AU - Schulte, B. W.

AU - Schutz, B. F.

AU - Setyawati, Y.

AU - Venneberg, J.

AU - von Wrangel, J.

AU - Weinert, M.

AU - Wellmann, F.

AU - Weßels, Peter

AU - Woehler, J.

AU - Junker, Jonas

PY - 2023/6/7

Y1 - 2023/6/7

N2 - We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter \(H(z)\), including its current value, the Hubble constant \(H_0\). Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and \(H(z)\). The source mass distribution displays a peak around \(34\, {\rm M_\odot}\), followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a \(H(z)\) measurement, yielding \(H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}}\) (\(68\%\) credible interval) when combined with the \(H_0\) measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the \(H_0\) estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of \(H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}}\) with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent \(H_0\) studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about \(H_0\)) is the well-localized event GW190814.

AB - We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter \(H(z)\), including its current value, the Hubble constant \(H_0\). Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and \(H(z)\). The source mass distribution displays a peak around \(34\, {\rm M_\odot}\), followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a \(H(z)\) measurement, yielding \(H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}}\) (\(68\%\) credible interval) when combined with the \(H_0\) measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the \(H_0\) estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of \(H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}}\) with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent \(H_0\) studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about \(H_0\)) is the well-localized event GW190814.

KW - astro-ph.CO

KW - gr-qc

KW - Gravitational wave astronomy

KW - Gravitational waves

KW - Gravitational wave sources

UR - http://www.scopus.com/inward/record.url?scp=85163895637&partnerID=8YFLogxK

U2 - 10.3847/1538-4357/ac74bb

DO - 10.3847/1538-4357/ac74bb

M3 - Article

VL - 949

JO - Astrophysical Journal

JF - Astrophysical Journal

SN - 0004-637X

IS - 2

M1 - 76

ER -

By the same author(s)