Details
Original language | English |
---|---|
Article number | 43 |
Journal | Fluids and Barriers of the CNS |
Volume | 17 |
Issue number | 1 |
Publication status | Published - 16 Jul 2020 |
Abstract
Background: 4D flow magnetic resonance imaging (MRI) of CSF can make an important contribution to the understanding of hydrodynamic changes in various neurological diseases but remains limited in clinical application due to long acquisition times. The aim of this study was to evaluate the accuracy of compressed SENSE accelerated MRI measurements of the spinal CSF flow. Methods: In 20 healthy subjects 4D flow MRI of the CSF in the cervical spine was acquired using compressed sensitivity encoding [CSE, a combination of compressed sensing and parallel imaging (SENSE) provided by the manufacturer] with acceleration factors between 4 and 10. A conventional scan using SENSE was used as reference. Extracted parameters were peak velocity, absolute net flow, forward flow and backward flow. Bland-Altman analysis was performed to determine the scan-rescan reproducibility and the agreement between SENSE and compressed SENSE. Additionally, a time accumulated flow error was calculated. In one additional subject flow of the spinal canal at the level of the entire spinal cord was assessed. Results: Averaged acquisition times were 10:21 min (SENSE), 9:31 min (CSE4), 6:25 min (CSE6), 4:53 min (CSE8) and 3:51 min (CSE10). Acquisition of the CSF flow surrounding the entire spinal cord took 14:40 min. Bland-Altman analysis showed good agreement for peak velocity, but slight overestimations for absolute net flow, forward flow and backward flow (< 1 ml/min) in CSE4-8. Results of the accumulated flow error were similar for CSE4 to CSE8. Conclusion: A quantitative analysis of acceleration factors CSE4-10 showed that CSE with an acceleration factor up to 6 is feasible. This allows a scan time reduction of 40% and enables the acquisition and analysis of the CSF flow dynamics surrounding the entire spinal cord within a clinically acceptable scan time.
Keywords
- 4D flow MRI, Cerebrospinal fluid, Compressed sensing, CSF
ASJC Scopus subject areas
- Neuroscience(all)
- Neurology
- Neuroscience(all)
- Developmental Neuroscience
- Neuroscience(all)
- Cellular and Molecular Neuroscience
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Fluids and Barriers of the CNS, Vol. 17, No. 1, 43, 16.07.2020.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Compressed-sensing accelerated 4D flow MRI of cerebrospinal fluid dynamics
AU - Jaeger, Elena
AU - Sonnabend, Kristina
AU - Schaarschmidt, Frank
AU - Maintz, David
AU - Weiss, Kilian
AU - Bunck, Alexander C.
PY - 2020/7/16
Y1 - 2020/7/16
N2 - Background: 4D flow magnetic resonance imaging (MRI) of CSF can make an important contribution to the understanding of hydrodynamic changes in various neurological diseases but remains limited in clinical application due to long acquisition times. The aim of this study was to evaluate the accuracy of compressed SENSE accelerated MRI measurements of the spinal CSF flow. Methods: In 20 healthy subjects 4D flow MRI of the CSF in the cervical spine was acquired using compressed sensitivity encoding [CSE, a combination of compressed sensing and parallel imaging (SENSE) provided by the manufacturer] with acceleration factors between 4 and 10. A conventional scan using SENSE was used as reference. Extracted parameters were peak velocity, absolute net flow, forward flow and backward flow. Bland-Altman analysis was performed to determine the scan-rescan reproducibility and the agreement between SENSE and compressed SENSE. Additionally, a time accumulated flow error was calculated. In one additional subject flow of the spinal canal at the level of the entire spinal cord was assessed. Results: Averaged acquisition times were 10:21 min (SENSE), 9:31 min (CSE4), 6:25 min (CSE6), 4:53 min (CSE8) and 3:51 min (CSE10). Acquisition of the CSF flow surrounding the entire spinal cord took 14:40 min. Bland-Altman analysis showed good agreement for peak velocity, but slight overestimations for absolute net flow, forward flow and backward flow (< 1 ml/min) in CSE4-8. Results of the accumulated flow error were similar for CSE4 to CSE8. Conclusion: A quantitative analysis of acceleration factors CSE4-10 showed that CSE with an acceleration factor up to 6 is feasible. This allows a scan time reduction of 40% and enables the acquisition and analysis of the CSF flow dynamics surrounding the entire spinal cord within a clinically acceptable scan time.
AB - Background: 4D flow magnetic resonance imaging (MRI) of CSF can make an important contribution to the understanding of hydrodynamic changes in various neurological diseases but remains limited in clinical application due to long acquisition times. The aim of this study was to evaluate the accuracy of compressed SENSE accelerated MRI measurements of the spinal CSF flow. Methods: In 20 healthy subjects 4D flow MRI of the CSF in the cervical spine was acquired using compressed sensitivity encoding [CSE, a combination of compressed sensing and parallel imaging (SENSE) provided by the manufacturer] with acceleration factors between 4 and 10. A conventional scan using SENSE was used as reference. Extracted parameters were peak velocity, absolute net flow, forward flow and backward flow. Bland-Altman analysis was performed to determine the scan-rescan reproducibility and the agreement between SENSE and compressed SENSE. Additionally, a time accumulated flow error was calculated. In one additional subject flow of the spinal canal at the level of the entire spinal cord was assessed. Results: Averaged acquisition times were 10:21 min (SENSE), 9:31 min (CSE4), 6:25 min (CSE6), 4:53 min (CSE8) and 3:51 min (CSE10). Acquisition of the CSF flow surrounding the entire spinal cord took 14:40 min. Bland-Altman analysis showed good agreement for peak velocity, but slight overestimations for absolute net flow, forward flow and backward flow (< 1 ml/min) in CSE4-8. Results of the accumulated flow error were similar for CSE4 to CSE8. Conclusion: A quantitative analysis of acceleration factors CSE4-10 showed that CSE with an acceleration factor up to 6 is feasible. This allows a scan time reduction of 40% and enables the acquisition and analysis of the CSF flow dynamics surrounding the entire spinal cord within a clinically acceptable scan time.
KW - 4D flow MRI
KW - Cerebrospinal fluid
KW - Compressed sensing
KW - CSF
UR - http://www.scopus.com/inward/record.url?scp=85088493883&partnerID=8YFLogxK
U2 - 10.1186/s12987-020-00206-3
DO - 10.1186/s12987-020-00206-3
M3 - Article
C2 - 32677977
AN - SCOPUS:85088493883
VL - 17
JO - Fluids and Barriers of the CNS
JF - Fluids and Barriers of the CNS
IS - 1
M1 - 43
ER -