Details
Original language | English |
---|---|
Article number | e0323678 |
Number of pages | 29 |
Journal | PLoS ONE |
Volume | 20 |
Issue number | 5 |
Publication status | Published - 16 May 2025 |
Abstract
While X-ray diffraction (XRD) is a commonly used method for quantification analysis using Rietveld refinement and quantitative Mössbauer spectroscopy is sporadically used primarily for iron speciation, laboratory X-ray Absorption Fine Structure Spectroscopy (lab-XAFS) is rarely applied for the quantitative determination of sample compositions. With the recent developments of laboratory-based XAFS spectrometers, this method becomes more interesting for many applications as well as for quantification. The goal of this study is to compare quantitative lab-XAFS via Linear Combination Fitting (LCF) of reference spectra with XRD and Mössbauer spectroscopy. Iron species analysis with the focus on the determination of the mass ratio alpha-iron(III) oxide (α-Fe 2O 3)/iron(II, III) oxide (Fe 3O 4) was used as an example. The examinations were performed on synthetic α-Fe 2O 3/Fe 3O 4 model mixtures and, predominantly, on a natural iron ore sample mainly consisting of the minerals hematite and magnetite, thus, these two iron oxides. For the iron K-edge lab-XAFS measurements an X-ray tube-based spectrometer using the von Hamos geometry with Highly Annealed Pyrolytic Graphite (HAPG) mosaic crystal optic was used. The capabilities and challenges of each method are discussed. The quantitative model mixtures examinations by lab-XAFS show results and accuracies similar to those obtained by XRD and Mössbauer spectroscopy. However, while the quantitative results for the iron ore investigations by lab-XAFS are in good agreement (deviation of 2 percents) with the XRD results, the composition determined by Mössbauer spectroscopy differs clearly from the lab-XAFS and XRD results. Furthermore, the Mössbauer spectroscopic examinations hint the presence of an additional iron oxide species affecting the quantification. Besides the still common challenges in identification, differentiation and quantification of different iron oxides, the results show that quantitative lab-XAFS can particularly compete with quantitative XRD when determining the species composition of one element. This makes lab-XAFS particularly well-suited for routine analytics.
ASJC Scopus subject areas
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: PLoS ONE, Vol. 20, No. 5, e0323678, 16.05.2025.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Can laboratory-based XAFS compete with XRD and Mössbauer spectroscopy as a tool for quantitative species analysis? Critical evaluation using the example of a natural iron ore
AU - Praetz, Sebastian
AU - Schlesiger, Christopher
AU - Motz, Damian Alexander
AU - Klimke, Stephen
AU - Jahns, Moritz
AU - Gottschalk, Christine
AU - Heinrich, Lena
AU - Heppke, Eva Maria
AU - Malzer, Wolfgang
AU - Renz, Franz
AU - Vogt, Carla
AU - Kanngießer, Birgit
N1 - Publisher Copyright: © 2025 Praetz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2025/5/16
Y1 - 2025/5/16
N2 - While X-ray diffraction (XRD) is a commonly used method for quantification analysis using Rietveld refinement and quantitative Mössbauer spectroscopy is sporadically used primarily for iron speciation, laboratory X-ray Absorption Fine Structure Spectroscopy (lab-XAFS) is rarely applied for the quantitative determination of sample compositions. With the recent developments of laboratory-based XAFS spectrometers, this method becomes more interesting for many applications as well as for quantification. The goal of this study is to compare quantitative lab-XAFS via Linear Combination Fitting (LCF) of reference spectra with XRD and Mössbauer spectroscopy. Iron species analysis with the focus on the determination of the mass ratio alpha-iron(III) oxide (α-Fe 2O 3)/iron(II, III) oxide (Fe 3O 4) was used as an example. The examinations were performed on synthetic α-Fe 2O 3/Fe 3O 4 model mixtures and, predominantly, on a natural iron ore sample mainly consisting of the minerals hematite and magnetite, thus, these two iron oxides. For the iron K-edge lab-XAFS measurements an X-ray tube-based spectrometer using the von Hamos geometry with Highly Annealed Pyrolytic Graphite (HAPG) mosaic crystal optic was used. The capabilities and challenges of each method are discussed. The quantitative model mixtures examinations by lab-XAFS show results and accuracies similar to those obtained by XRD and Mössbauer spectroscopy. However, while the quantitative results for the iron ore investigations by lab-XAFS are in good agreement (deviation of 2 percents) with the XRD results, the composition determined by Mössbauer spectroscopy differs clearly from the lab-XAFS and XRD results. Furthermore, the Mössbauer spectroscopic examinations hint the presence of an additional iron oxide species affecting the quantification. Besides the still common challenges in identification, differentiation and quantification of different iron oxides, the results show that quantitative lab-XAFS can particularly compete with quantitative XRD when determining the species composition of one element. This makes lab-XAFS particularly well-suited for routine analytics.
AB - While X-ray diffraction (XRD) is a commonly used method for quantification analysis using Rietveld refinement and quantitative Mössbauer spectroscopy is sporadically used primarily for iron speciation, laboratory X-ray Absorption Fine Structure Spectroscopy (lab-XAFS) is rarely applied for the quantitative determination of sample compositions. With the recent developments of laboratory-based XAFS spectrometers, this method becomes more interesting for many applications as well as for quantification. The goal of this study is to compare quantitative lab-XAFS via Linear Combination Fitting (LCF) of reference spectra with XRD and Mössbauer spectroscopy. Iron species analysis with the focus on the determination of the mass ratio alpha-iron(III) oxide (α-Fe 2O 3)/iron(II, III) oxide (Fe 3O 4) was used as an example. The examinations were performed on synthetic α-Fe 2O 3/Fe 3O 4 model mixtures and, predominantly, on a natural iron ore sample mainly consisting of the minerals hematite and magnetite, thus, these two iron oxides. For the iron K-edge lab-XAFS measurements an X-ray tube-based spectrometer using the von Hamos geometry with Highly Annealed Pyrolytic Graphite (HAPG) mosaic crystal optic was used. The capabilities and challenges of each method are discussed. The quantitative model mixtures examinations by lab-XAFS show results and accuracies similar to those obtained by XRD and Mössbauer spectroscopy. However, while the quantitative results for the iron ore investigations by lab-XAFS are in good agreement (deviation of 2 percents) with the XRD results, the composition determined by Mössbauer spectroscopy differs clearly from the lab-XAFS and XRD results. Furthermore, the Mössbauer spectroscopic examinations hint the presence of an additional iron oxide species affecting the quantification. Besides the still common challenges in identification, differentiation and quantification of different iron oxides, the results show that quantitative lab-XAFS can particularly compete with quantitative XRD when determining the species composition of one element. This makes lab-XAFS particularly well-suited for routine analytics.
UR - http://www.scopus.com/inward/record.url?scp=105005529150&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0323678
DO - 10.1371/journal.pone.0323678
M3 - Article
VL - 20
JO - PLoS ONE
JF - PLoS ONE
SN - 1932-6203
IS - 5
M1 - e0323678
ER -