Are Phase Center Corrections Identical for Identical Frequencies from Different GNSS?

Research output: Contribution to conferencePaperResearchpeer review

Research Organisations

View graph of relations

Details

Original languageEnglish
Number of pages15
Publication statusPublished - 21 Jun 2021
EventFIG e-Working Week 2021: Smart Surveyors for Land and Water Management - Challenges in a New Reality, Virtual, June 21–25 2021 - online, Netherlands
Duration: 20 Jun 202125 Jun 2021
https://fig.net/fig2021

Conference

ConferenceFIG e-Working Week 2021
Abbreviated titleFIG e-Working Week 2021
Country/TerritoryNetherlands
Period20 Jun 202125 Jun 2021
Internet address

Abstract

Global Navigation Satellite Systems (GNSS) are used for the realization of land and water management tasks since they provide an absolute and highly accurate position. Especially measurements for the reorganization of land parcels are often carried out in dense urban areas. In these situations, only multi-GNSS enables a reliable position solution. In less severe situations, it improves the accuracy of the position significantly. The quality of multi-GNSS carrier phase measurements depends, among other factors, on the knowledge of the exact electrical receiving point of the receiver antenna, known as phase center. This location varies with the direction of the incoming signal, so that phase center corrections (PCC), including a phase center offset (PCO) and phase center variations (PCV), have to be taken into account. These corrections are frequency and antenna type dependent with the result that PCC for each antenna type and frequency have to be determined separately. This is especially true for including newer frequencies (e.g. L5) or GNSS like Galileo or Beidou.
In this contribution, the theoretical background of PCC and a short description of our estimation process developed at the Institut für Erdmessung (IfE) are given. Next, the repeatability of different calibrations for the same antenna is assessed. The results underline an overall good repeatability for several GPS, Galileo and Beidou frequencies with differences at maximum of 2 mm at low elevations except for L2 frequencies of GPS. Here, the differences are maximal 3 mm, probably due to settings of the tracking loop parameters.
The comparison of PCC of identical frequencies from different GNSS shows a very good agreement between GPS and Galileo L1 and L5 frequencies. Here, the maximum difference is less than 1 mm. The differences between Galileo L7 (E5b) and Beidou L7 (B2b) are clearly larger, at maximum 2.3 mm. The significantly different number of observations for the PCC estimation could explain these deviations.
In a joint estimation approach, the identical frequencies of different GNSS are combined at the normal equation level. The jointly estimated PCC are compared to the “classical” approach resulting in differences smaller than 1.5 mm. Moreover, it could be shown, that these differences are mainly linked to the number of observations from each individual frequency. Since other antenna-receiver combinations show higher differences, a bigger study with several, different combinations need to be carried out in near future.

Keywords

    Positioning, antenna calibration, Phase centre corrections, Multi-GNSS, Beidou

Research Area (based on ÖFOS 2012)

  • TECHNICAL SCIENCES
  • Environmental Engineering, Applied Geosciences
  • Geodesy, Surveying
  • Satellite geodesy
  • TECHNICAL SCIENCES
  • Environmental Engineering, Applied Geosciences
  • Geodesy, Surveying
  • Geodesy
  • TECHNICAL SCIENCES
  • Electrical Engineering, Electronics, Information Engineering
  • Electrical Engineering, Electronics, Information Engineering
  • Microwave engineering

Sustainable Development Goals

Cite this

Are Phase Center Corrections Identical for Identical Frequencies from Different GNSS? / Kröger, Johannes; Breva, Yannick; Kersten, Tobias et al.
2021. Paper presented at FIG e-Working Week 2021, Netherlands.

Research output: Contribution to conferencePaperResearchpeer review

Kröger J, Breva Y, Kersten T, Schön S. Are Phase Center Corrections Identical for Identical Frequencies from Different GNSS?. 2021. Paper presented at FIG e-Working Week 2021, Netherlands.
Download
@conference{d0a44b32275d4cf6960214093ef54d8b,
title = "Are Phase Center Corrections Identical for Identical Frequencies from Different GNSS?",
abstract = "Global Navigation Satellite Systems (GNSS) are used for the realization of land and water management tasks since they provide an absolute and highly accurate position. Especially measurements for the reorganization of land parcels are often carried out in dense urban areas. In these situations, only multi-GNSS enables a reliable position solution. In less severe situations, it improves the accuracy of the position significantly. The quality of multi-GNSS carrier phase measurements depends, among other factors, on the knowledge of the exact electrical receiving point of the receiver antenna, known as phase center. This location varies with the direction of the incoming signal, so that phase center corrections (PCC), including a phase center offset (PCO) and phase center variations (PCV), have to be taken into account. These corrections are frequency and antenna type dependent with the result that PCC for each antenna type and frequency have to be determined separately. This is especially true for including newer frequencies (e.g. L5) or GNSS like Galileo or Beidou.In this contribution, the theoretical background of PCC and a short description of our estimation process developed at the Institut f{\"u}r Erdmessung (IfE) are given. Next, the repeatability of different calibrations for the same antenna is assessed. The results underline an overall good repeatability for several GPS, Galileo and Beidou frequencies with differences at maximum of 2 mm at low elevations except for L2 frequencies of GPS. Here, the differences are maximal 3 mm, probably due to settings of the tracking loop parameters.The comparison of PCC of identical frequencies from different GNSS shows a very good agreement between GPS and Galileo L1 and L5 frequencies. Here, the maximum difference is less than 1 mm. The differences between Galileo L7 (E5b) and Beidou L7 (B2b) are clearly larger, at maximum 2.3 mm. The significantly different number of observations for the PCC estimation could explain these deviations.In a joint estimation approach, the identical frequencies of different GNSS are combined at the normal equation level. The jointly estimated PCC are compared to the “classical” approach resulting in differences smaller than 1.5 mm. Moreover, it could be shown, that these differences are mainly linked to the number of observations from each individual frequency. Since other antenna-receiver combinations show higher differences, a bigger study with several, different combinations need to be carried out in near future.",
keywords = "Positioning, antenna calibration, Phase centre corrections, Multi-GNSS, Beidou",
author = "Johannes Kr{\"o}ger and Yannick Breva and Tobias Kersten and Steffen Sch{\"o}n",
year = "2021",
month = jun,
day = "21",
language = "English",
note = "FIG e-Working Week 2021 : Smart Surveyors for Land and Water Management - Challenges in a New Reality, Virtual, June 21–25 2021, FIG e-Working Week 2021 ; Conference date: 20-06-2021 Through 25-06-2021",
url = "https://fig.net/fig2021",

}

Download

TY - CONF

T1 - Are Phase Center Corrections Identical for Identical Frequencies from Different GNSS?

AU - Kröger, Johannes

AU - Breva, Yannick

AU - Kersten, Tobias

AU - Schön, Steffen

PY - 2021/6/21

Y1 - 2021/6/21

N2 - Global Navigation Satellite Systems (GNSS) are used for the realization of land and water management tasks since they provide an absolute and highly accurate position. Especially measurements for the reorganization of land parcels are often carried out in dense urban areas. In these situations, only multi-GNSS enables a reliable position solution. In less severe situations, it improves the accuracy of the position significantly. The quality of multi-GNSS carrier phase measurements depends, among other factors, on the knowledge of the exact electrical receiving point of the receiver antenna, known as phase center. This location varies with the direction of the incoming signal, so that phase center corrections (PCC), including a phase center offset (PCO) and phase center variations (PCV), have to be taken into account. These corrections are frequency and antenna type dependent with the result that PCC for each antenna type and frequency have to be determined separately. This is especially true for including newer frequencies (e.g. L5) or GNSS like Galileo or Beidou.In this contribution, the theoretical background of PCC and a short description of our estimation process developed at the Institut für Erdmessung (IfE) are given. Next, the repeatability of different calibrations for the same antenna is assessed. The results underline an overall good repeatability for several GPS, Galileo and Beidou frequencies with differences at maximum of 2 mm at low elevations except for L2 frequencies of GPS. Here, the differences are maximal 3 mm, probably due to settings of the tracking loop parameters.The comparison of PCC of identical frequencies from different GNSS shows a very good agreement between GPS and Galileo L1 and L5 frequencies. Here, the maximum difference is less than 1 mm. The differences between Galileo L7 (E5b) and Beidou L7 (B2b) are clearly larger, at maximum 2.3 mm. The significantly different number of observations for the PCC estimation could explain these deviations.In a joint estimation approach, the identical frequencies of different GNSS are combined at the normal equation level. The jointly estimated PCC are compared to the “classical” approach resulting in differences smaller than 1.5 mm. Moreover, it could be shown, that these differences are mainly linked to the number of observations from each individual frequency. Since other antenna-receiver combinations show higher differences, a bigger study with several, different combinations need to be carried out in near future.

AB - Global Navigation Satellite Systems (GNSS) are used for the realization of land and water management tasks since they provide an absolute and highly accurate position. Especially measurements for the reorganization of land parcels are often carried out in dense urban areas. In these situations, only multi-GNSS enables a reliable position solution. In less severe situations, it improves the accuracy of the position significantly. The quality of multi-GNSS carrier phase measurements depends, among other factors, on the knowledge of the exact electrical receiving point of the receiver antenna, known as phase center. This location varies with the direction of the incoming signal, so that phase center corrections (PCC), including a phase center offset (PCO) and phase center variations (PCV), have to be taken into account. These corrections are frequency and antenna type dependent with the result that PCC for each antenna type and frequency have to be determined separately. This is especially true for including newer frequencies (e.g. L5) or GNSS like Galileo or Beidou.In this contribution, the theoretical background of PCC and a short description of our estimation process developed at the Institut für Erdmessung (IfE) are given. Next, the repeatability of different calibrations for the same antenna is assessed. The results underline an overall good repeatability for several GPS, Galileo and Beidou frequencies with differences at maximum of 2 mm at low elevations except for L2 frequencies of GPS. Here, the differences are maximal 3 mm, probably due to settings of the tracking loop parameters.The comparison of PCC of identical frequencies from different GNSS shows a very good agreement between GPS and Galileo L1 and L5 frequencies. Here, the maximum difference is less than 1 mm. The differences between Galileo L7 (E5b) and Beidou L7 (B2b) are clearly larger, at maximum 2.3 mm. The significantly different number of observations for the PCC estimation could explain these deviations.In a joint estimation approach, the identical frequencies of different GNSS are combined at the normal equation level. The jointly estimated PCC are compared to the “classical” approach resulting in differences smaller than 1.5 mm. Moreover, it could be shown, that these differences are mainly linked to the number of observations from each individual frequency. Since other antenna-receiver combinations show higher differences, a bigger study with several, different combinations need to be carried out in near future.

KW - Positioning

KW - antenna calibration

KW - Phase centre corrections

KW - Multi-GNSS

KW - Beidou

M3 - Paper

T2 - FIG e-Working Week 2021

Y2 - 20 June 2021 through 25 June 2021

ER -