Details
Original language | English |
---|---|
Number of pages | 15 |
Publication status | Published - 21 Jun 2021 |
Event | FIG e-Working Week 2021: Smart Surveyors for Land and Water Management - Challenges in a New Reality, Virtual, June 21–25 2021 - online, Netherlands Duration: 20 Jun 2021 → 25 Jun 2021 https://fig.net/fig2021 |
Conference
Conference | FIG e-Working Week 2021 |
---|---|
Abbreviated title | FIG e-Working Week 2021 |
Country/Territory | Netherlands |
Period | 20 Jun 2021 → 25 Jun 2021 |
Internet address |
Abstract
In this contribution, the theoretical background of PCC and a short description of our estimation process developed at the Institut für Erdmessung (IfE) are given. Next, the repeatability of different calibrations for the same antenna is assessed. The results underline an overall good repeatability for several GPS, Galileo and Beidou frequencies with differences at maximum of 2 mm at low elevations except for L2 frequencies of GPS. Here, the differences are maximal 3 mm, probably due to settings of the tracking loop parameters.
The comparison of PCC of identical frequencies from different GNSS shows a very good agreement between GPS and Galileo L1 and L5 frequencies. Here, the maximum difference is less than 1 mm. The differences between Galileo L7 (E5b) and Beidou L7 (B2b) are clearly larger, at maximum 2.3 mm. The significantly different number of observations for the PCC estimation could explain these deviations.
In a joint estimation approach, the identical frequencies of different GNSS are combined at the normal equation level. The jointly estimated PCC are compared to the “classical” approach resulting in differences smaller than 1.5 mm. Moreover, it could be shown, that these differences are mainly linked to the number of observations from each individual frequency. Since other antenna-receiver combinations show higher differences, a bigger study with several, different combinations need to be carried out in near future.
Keywords
- Positioning, antenna calibration, Phase centre corrections, Multi-GNSS, Beidou
Research Area (based on ÖFOS 2012)
- TECHNICAL SCIENCES
- Environmental Engineering, Applied Geosciences
- Geodesy, Surveying
- Satellite geodesy
- TECHNICAL SCIENCES
- Environmental Engineering, Applied Geosciences
- Geodesy, Surveying
- Geodesy
- TECHNICAL SCIENCES
- Electrical Engineering, Electronics, Information Engineering
- Electrical Engineering, Electronics, Information Engineering
- Microwave engineering
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
2021. Paper presented at FIG e-Working Week 2021, Netherlands.
Research output: Contribution to conference › Paper › Research › peer review
}
TY - CONF
T1 - Are Phase Center Corrections Identical for Identical Frequencies from Different GNSS?
AU - Kröger, Johannes
AU - Breva, Yannick
AU - Kersten, Tobias
AU - Schön, Steffen
PY - 2021/6/21
Y1 - 2021/6/21
N2 - Global Navigation Satellite Systems (GNSS) are used for the realization of land and water management tasks since they provide an absolute and highly accurate position. Especially measurements for the reorganization of land parcels are often carried out in dense urban areas. In these situations, only multi-GNSS enables a reliable position solution. In less severe situations, it improves the accuracy of the position significantly. The quality of multi-GNSS carrier phase measurements depends, among other factors, on the knowledge of the exact electrical receiving point of the receiver antenna, known as phase center. This location varies with the direction of the incoming signal, so that phase center corrections (PCC), including a phase center offset (PCO) and phase center variations (PCV), have to be taken into account. These corrections are frequency and antenna type dependent with the result that PCC for each antenna type and frequency have to be determined separately. This is especially true for including newer frequencies (e.g. L5) or GNSS like Galileo or Beidou.In this contribution, the theoretical background of PCC and a short description of our estimation process developed at the Institut für Erdmessung (IfE) are given. Next, the repeatability of different calibrations for the same antenna is assessed. The results underline an overall good repeatability for several GPS, Galileo and Beidou frequencies with differences at maximum of 2 mm at low elevations except for L2 frequencies of GPS. Here, the differences are maximal 3 mm, probably due to settings of the tracking loop parameters.The comparison of PCC of identical frequencies from different GNSS shows a very good agreement between GPS and Galileo L1 and L5 frequencies. Here, the maximum difference is less than 1 mm. The differences between Galileo L7 (E5b) and Beidou L7 (B2b) are clearly larger, at maximum 2.3 mm. The significantly different number of observations for the PCC estimation could explain these deviations.In a joint estimation approach, the identical frequencies of different GNSS are combined at the normal equation level. The jointly estimated PCC are compared to the “classical” approach resulting in differences smaller than 1.5 mm. Moreover, it could be shown, that these differences are mainly linked to the number of observations from each individual frequency. Since other antenna-receiver combinations show higher differences, a bigger study with several, different combinations need to be carried out in near future.
AB - Global Navigation Satellite Systems (GNSS) are used for the realization of land and water management tasks since they provide an absolute and highly accurate position. Especially measurements for the reorganization of land parcels are often carried out in dense urban areas. In these situations, only multi-GNSS enables a reliable position solution. In less severe situations, it improves the accuracy of the position significantly. The quality of multi-GNSS carrier phase measurements depends, among other factors, on the knowledge of the exact electrical receiving point of the receiver antenna, known as phase center. This location varies with the direction of the incoming signal, so that phase center corrections (PCC), including a phase center offset (PCO) and phase center variations (PCV), have to be taken into account. These corrections are frequency and antenna type dependent with the result that PCC for each antenna type and frequency have to be determined separately. This is especially true for including newer frequencies (e.g. L5) or GNSS like Galileo or Beidou.In this contribution, the theoretical background of PCC and a short description of our estimation process developed at the Institut für Erdmessung (IfE) are given. Next, the repeatability of different calibrations for the same antenna is assessed. The results underline an overall good repeatability for several GPS, Galileo and Beidou frequencies with differences at maximum of 2 mm at low elevations except for L2 frequencies of GPS. Here, the differences are maximal 3 mm, probably due to settings of the tracking loop parameters.The comparison of PCC of identical frequencies from different GNSS shows a very good agreement between GPS and Galileo L1 and L5 frequencies. Here, the maximum difference is less than 1 mm. The differences between Galileo L7 (E5b) and Beidou L7 (B2b) are clearly larger, at maximum 2.3 mm. The significantly different number of observations for the PCC estimation could explain these deviations.In a joint estimation approach, the identical frequencies of different GNSS are combined at the normal equation level. The jointly estimated PCC are compared to the “classical” approach resulting in differences smaller than 1.5 mm. Moreover, it could be shown, that these differences are mainly linked to the number of observations from each individual frequency. Since other antenna-receiver combinations show higher differences, a bigger study with several, different combinations need to be carried out in near future.
KW - Positioning
KW - antenna calibration
KW - Phase centre corrections
KW - Multi-GNSS
KW - Beidou
M3 - Paper
T2 - FIG e-Working Week 2021
Y2 - 20 June 2021 through 25 June 2021
ER -