Details
Original language | English |
---|---|
Pages (from-to) | 450-462 |
Number of pages | 13 |
Journal | International Journal of Applied Earth Observation and Geoinformation |
Volume | 73 |
Early online date | 21 Jul 2018 |
Publication status | Published - Dec 2018 |
Abstract
Wetlands are home to a great variety of flora and fauna species and provide several unique environmental services. Knowledge of wetland species distribution is critical for sustainable management and resource assessment. In this study, multi-temporal single- and full-polarized RADARSAT-2 and single-polarized TerraSAR-X data were applied to characterize the wetland extent of a test site located in the north east of Newfoundland and Labrador, Canada. The accuracy and information content of wetland maps using remote sensing data depend on several factors, such as the type of data, input features, classification algorithms, and ecological characteristics of wetland classes. Most previous wetland studies examined the efficiency of one or two feature types, including intensity and polarimetry. Fewer investigations have examined the potential of interferometric coherence for wetland mapping. Thus, we evaluated the efficiency of using multiple feature types, including intensity, interferometric coherence, and polarimetric scattering for wetland mapping in multiple classification scenarios. An ensemble classifier, namely Random Forest (RF), and a kernel-based Support Vector Machine (SVM) were also used to determine the effect of the classifier. In all classification scenarios, SVM outperformed RF by 1.5-5%. The classification results demonstrated that the intensity features had a higher accuracy relative to coherence and polarimetric features. However, an inclusion of all feature types improved the classification accuracy for both RF and SVM classifiers. We also optimized the type and number of input features using an integration of RF variable importance and Spearman's rank-order correlation. The results of this analysis found that, of 81 input features, 22 were the most important uncorrelated features for classification. An overall classification accuracy of 85.4% was achieved by incorporating these 22 important uncorrelated features based on the proposed classification framework.
Keywords
- Interferometric coherence, Random Forest, Support Vector Machine, Wetland
ASJC Scopus subject areas
- Environmental Science(all)
- Global and Planetary Change
- Earth and Planetary Sciences(all)
- Earth-Surface Processes
- Earth and Planetary Sciences(all)
- Computers in Earth Sciences
- Environmental Science(all)
- Management, Monitoring, Policy and Law
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Journal of Applied Earth Observation and Geoinformation, Vol. 73, 12.2018, p. 450-462.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - An efficient feature optimization for wetland mapping by synergistic use of SAR intensity, interferometry, and polarimetry data
AU - Mohammadimanesh, Fariba
AU - Salehi, Bahram
AU - Mahdianpari, Masoud
AU - Motagh, Mahdi
AU - Brisco, Brian
N1 - © 2018 Elsevier B.V. All rights reserved.
PY - 2018/12
Y1 - 2018/12
N2 - Wetlands are home to a great variety of flora and fauna species and provide several unique environmental services. Knowledge of wetland species distribution is critical for sustainable management and resource assessment. In this study, multi-temporal single- and full-polarized RADARSAT-2 and single-polarized TerraSAR-X data were applied to characterize the wetland extent of a test site located in the north east of Newfoundland and Labrador, Canada. The accuracy and information content of wetland maps using remote sensing data depend on several factors, such as the type of data, input features, classification algorithms, and ecological characteristics of wetland classes. Most previous wetland studies examined the efficiency of one or two feature types, including intensity and polarimetry. Fewer investigations have examined the potential of interferometric coherence for wetland mapping. Thus, we evaluated the efficiency of using multiple feature types, including intensity, interferometric coherence, and polarimetric scattering for wetland mapping in multiple classification scenarios. An ensemble classifier, namely Random Forest (RF), and a kernel-based Support Vector Machine (SVM) were also used to determine the effect of the classifier. In all classification scenarios, SVM outperformed RF by 1.5-5%. The classification results demonstrated that the intensity features had a higher accuracy relative to coherence and polarimetric features. However, an inclusion of all feature types improved the classification accuracy for both RF and SVM classifiers. We also optimized the type and number of input features using an integration of RF variable importance and Spearman's rank-order correlation. The results of this analysis found that, of 81 input features, 22 were the most important uncorrelated features for classification. An overall classification accuracy of 85.4% was achieved by incorporating these 22 important uncorrelated features based on the proposed classification framework.
AB - Wetlands are home to a great variety of flora and fauna species and provide several unique environmental services. Knowledge of wetland species distribution is critical for sustainable management and resource assessment. In this study, multi-temporal single- and full-polarized RADARSAT-2 and single-polarized TerraSAR-X data were applied to characterize the wetland extent of a test site located in the north east of Newfoundland and Labrador, Canada. The accuracy and information content of wetland maps using remote sensing data depend on several factors, such as the type of data, input features, classification algorithms, and ecological characteristics of wetland classes. Most previous wetland studies examined the efficiency of one or two feature types, including intensity and polarimetry. Fewer investigations have examined the potential of interferometric coherence for wetland mapping. Thus, we evaluated the efficiency of using multiple feature types, including intensity, interferometric coherence, and polarimetric scattering for wetland mapping in multiple classification scenarios. An ensemble classifier, namely Random Forest (RF), and a kernel-based Support Vector Machine (SVM) were also used to determine the effect of the classifier. In all classification scenarios, SVM outperformed RF by 1.5-5%. The classification results demonstrated that the intensity features had a higher accuracy relative to coherence and polarimetric features. However, an inclusion of all feature types improved the classification accuracy for both RF and SVM classifiers. We also optimized the type and number of input features using an integration of RF variable importance and Spearman's rank-order correlation. The results of this analysis found that, of 81 input features, 22 were the most important uncorrelated features for classification. An overall classification accuracy of 85.4% was achieved by incorporating these 22 important uncorrelated features based on the proposed classification framework.
KW - Interferometric coherence
KW - Random Forest
KW - Support Vector Machine
KW - Wetland
UR - http://www.scopus.com/inward/record.url?scp=85050486863&partnerID=8YFLogxK
U2 - 10.1016/j.jag.2018.06.005
DO - 10.1016/j.jag.2018.06.005
M3 - Article
AN - SCOPUS:85050486863
VL - 73
SP - 450
EP - 462
JO - International Journal of Applied Earth Observation and Geoinformation
JF - International Journal of Applied Earth Observation and Geoinformation
SN - 1569-8432
ER -