Details
Original language | English |
---|---|
Article number | 114302 |
Pages (from-to) | 1635-1677 |
Number of pages | 43 |
Journal | Archives of Computational Methods in Engineering |
Volume | 32 |
Issue number | 3 |
Early online date | 17 Oct 2024 |
Publication status | Published - Apr 2025 |
Abstract
Multistable structures are extensively researched due to their adaptability across various operational conditions. A basic class of these multistable structures can be bistable laminates that exhibit two stable configurations separated by an energy barrier. These structures require external energy input to change between stable states through a non-linear snap-through process. This property of multistability and associated non-linear characteristics make their research even more engaging and, at the same time, challenging. Novel modeling and design techniques are required for the efficient static and dynamic analysis of these structures. These components have a wide range of applications in fields such as microelectronics, medical devices, deployable structures, reconfigurable elements, and energy absorption and harvesting due to their ability to store and release energy during the snap-through shape transition. Although the topic of multistable structure is broad and interesting to engineers, this review paper provides a comprehensive overview of the current state of knowledge on the dynamic characteristics of multistable laminates, assessing their potential for morphing and energy harvesting applications. The paper begins with an introduction to bistability, explaining its basic characteristics, and then proceeds to review the various computational models developed to understand the highly non-linear dynamic characteristics of bistable laminates. These models include analytical, semi-analytical, numerical studies, and experimental validations with key highlights on recent developments in this domain. The paper then focuses on the potential of multistable laminates for energy harvesting applications, particularly from ambient vibrations. The paper highlights the importance of energy harvesting for powering small-scale electronic devices and the suitability of multistable laminates as ideal candidates for energy harvesters. Overall, this review paper provides a valuable resource for researchers and engineers working in bistable laminates and energy harvesting.
ASJC Scopus subject areas
- Computer Science(all)
- Computer Science Applications
- Mathematics(all)
- Applied Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Archives of Computational Methods in Engineering, Vol. 32, No. 3, 114302, 04.2025, p. 1635-1677.
Research output: Contribution to journal › Review article › Research › peer review
}
TY - JOUR
T1 - A Review of the Dynamic Behavior of Thermally Induced Bistable Configurations of Unsymmetrical Composite Laminates and their Applications
AU - Bashir, Danish
AU - Anilkumar, P. M.
AU - Scheffler, S.
AU - Haldar, A.
AU - Rao, B. N.
AU - Rolfes, R.
N1 - Publisher Copyright: © The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2024.
PY - 2025/4
Y1 - 2025/4
N2 - Multistable structures are extensively researched due to their adaptability across various operational conditions. A basic class of these multistable structures can be bistable laminates that exhibit two stable configurations separated by an energy barrier. These structures require external energy input to change between stable states through a non-linear snap-through process. This property of multistability and associated non-linear characteristics make their research even more engaging and, at the same time, challenging. Novel modeling and design techniques are required for the efficient static and dynamic analysis of these structures. These components have a wide range of applications in fields such as microelectronics, medical devices, deployable structures, reconfigurable elements, and energy absorption and harvesting due to their ability to store and release energy during the snap-through shape transition. Although the topic of multistable structure is broad and interesting to engineers, this review paper provides a comprehensive overview of the current state of knowledge on the dynamic characteristics of multistable laminates, assessing their potential for morphing and energy harvesting applications. The paper begins with an introduction to bistability, explaining its basic characteristics, and then proceeds to review the various computational models developed to understand the highly non-linear dynamic characteristics of bistable laminates. These models include analytical, semi-analytical, numerical studies, and experimental validations with key highlights on recent developments in this domain. The paper then focuses on the potential of multistable laminates for energy harvesting applications, particularly from ambient vibrations. The paper highlights the importance of energy harvesting for powering small-scale electronic devices and the suitability of multistable laminates as ideal candidates for energy harvesters. Overall, this review paper provides a valuable resource for researchers and engineers working in bistable laminates and energy harvesting.
AB - Multistable structures are extensively researched due to their adaptability across various operational conditions. A basic class of these multistable structures can be bistable laminates that exhibit two stable configurations separated by an energy barrier. These structures require external energy input to change between stable states through a non-linear snap-through process. This property of multistability and associated non-linear characteristics make their research even more engaging and, at the same time, challenging. Novel modeling and design techniques are required for the efficient static and dynamic analysis of these structures. These components have a wide range of applications in fields such as microelectronics, medical devices, deployable structures, reconfigurable elements, and energy absorption and harvesting due to their ability to store and release energy during the snap-through shape transition. Although the topic of multistable structure is broad and interesting to engineers, this review paper provides a comprehensive overview of the current state of knowledge on the dynamic characteristics of multistable laminates, assessing their potential for morphing and energy harvesting applications. The paper begins with an introduction to bistability, explaining its basic characteristics, and then proceeds to review the various computational models developed to understand the highly non-linear dynamic characteristics of bistable laminates. These models include analytical, semi-analytical, numerical studies, and experimental validations with key highlights on recent developments in this domain. The paper then focuses on the potential of multistable laminates for energy harvesting applications, particularly from ambient vibrations. The paper highlights the importance of energy harvesting for powering small-scale electronic devices and the suitability of multistable laminates as ideal candidates for energy harvesters. Overall, this review paper provides a valuable resource for researchers and engineers working in bistable laminates and energy harvesting.
UR - http://www.scopus.com/inward/record.url?scp=85207303909&partnerID=8YFLogxK
U2 - 10.1007/s11831-024-10192-6
DO - 10.1007/s11831-024-10192-6
M3 - Review article
AN - SCOPUS:85207303909
VL - 32
SP - 1635
EP - 1677
JO - Archives of Computational Methods in Engineering
JF - Archives of Computational Methods in Engineering
SN - 1134-3060
IS - 3
M1 - 114302
ER -