Details
Original language | English |
---|---|
Pages (from-to) | 402-414 |
Number of pages | 13 |
Journal | ISPRS Journal of Photogrammetry and Remote Sensing |
Volume | 196 |
Early online date | 17 Jan 2023 |
Publication status | Published - Feb 2023 |
Abstract
A massive landslide often causes long-lasting instability dynamics that need to be analyzed in detail for risk management and mitigation. Multiple satellite remote sensing observations, in-situ measurements, and geophysical approaches have been jointly implemented to monitor and interpret the life cycle of landslides and their failure mechanisms from various perspectives. In this work, we propose a framework where satellite optical and synthetic aperture radar (SAR) remote sensing techniques are combined with feature extractions using independent component analysis (ICA) and a mathematical relaxation model to assess the complete four-dimensional (4D) spatiotemporal patterns of post-failure slope evolution. The large, deep-seated Aniangzhai landslide in Southwest China that occurred on 17 June 2020 is comprehensively analyzed and characterized for its post-failure mechanism. Time series of Planet high-resolution optical images are first explored to derive the large horizontal motions for the first six months after the failure. Spatiotemporal dynamics of line-of-sight (LOS) displacement in the landslide body are then derived between November 2020 and February 2022 by combining 40 TerraSAR-X (TSX) High-resolution Spotlight (HS) images and 76 medium-resolution Sentinel-1 (S1) SAR datasets using Multi-temporal InSAR (MTI) method. The InSAR-derived results are subsequently analyzed with ICA to find common deformation components of points between optical and MTI results, indicating the same temporal evolution in the deformation pattern. Finally, the complete 4D deformation field for the whole post-failure period is modeled using a decaying exponential model representing stress relaxation after the failure by integrating multiple remote sensing datasets. Cross-correlation analysis of Planet imagery shows a decaying exponential pattern of post-failure displacements with an approximately 94% reduction in the deformation rate after six months with respect to the co-failure event. MTI analysis suggests a maximum LOS displacement rate of approximately 30 cm/year over the main failure body from November 2020 to February 2022; while the high-resolution TSX datasets show irreplaceable advantages in choosing the number of measurement points in MTI analysis with the number of measurement points being five times larger than those obtained by S1 datasets. The ICA analysis reveals three main types of kinematic patterns in the temporal evolution of post-failure deformation in MTI results, the dominant one being an exponential declining pattern similar to the results from Planet observations. Integrated 4D deformation modeling suggests that the most significant post-failure displacement mainly occurred toward the west, amounting to 28 m during the entire post-failure acquisitions from June 2020 until February 2022. Additionally, maximum displacements of 17 m and 19 m occurred in this period toward the north and downward, respectively.
Keywords
- 4D displacement, Independent component analysis (ICA), Multi-sensor, Multi-temporal InSAR (MTI), Post-failure, Satellite remote sensing
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Atomic and Molecular Physics, and Optics
- Engineering(all)
- Engineering (miscellaneous)
- Computer Science(all)
- Computer Science Applications
- Earth and Planetary Sciences(all)
- Computers in Earth Sciences
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 196, 02.2023, p. 402-414.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - A methodology to characterize 4D post-failure slope instability dynamics using remote sensing measurements
T2 - A case study of the Aniangzhai landslide in Sichuan, Southwest China
AU - Xia, Zhuge
AU - Motagh, Mahdi
AU - Li, Tao
AU - Peng, Mimi
AU - Roessner, Sigrid
N1 - Funding Information: The authors acknowledge two anonymous reviewers and Prof. Zhong Lu for their constructive suggestions and discussions. The authors also acknowledge the German Space Agency (DLR) gratefully for providing the TerraSAR-X datasets and the Copernicus program for free access to Sentinel-1 data. Z.X. is supported by China Scholarship Council (CSC) Grant #201908080048 . This work was partially sponsored by the National Natural Science Foundation of China Grant No. 42074031 , and partly supported by Helmholtz within the framework of HIP project MultiSaT4SLOWS.
PY - 2023/2
Y1 - 2023/2
N2 - A massive landslide often causes long-lasting instability dynamics that need to be analyzed in detail for risk management and mitigation. Multiple satellite remote sensing observations, in-situ measurements, and geophysical approaches have been jointly implemented to monitor and interpret the life cycle of landslides and their failure mechanisms from various perspectives. In this work, we propose a framework where satellite optical and synthetic aperture radar (SAR) remote sensing techniques are combined with feature extractions using independent component analysis (ICA) and a mathematical relaxation model to assess the complete four-dimensional (4D) spatiotemporal patterns of post-failure slope evolution. The large, deep-seated Aniangzhai landslide in Southwest China that occurred on 17 June 2020 is comprehensively analyzed and characterized for its post-failure mechanism. Time series of Planet high-resolution optical images are first explored to derive the large horizontal motions for the first six months after the failure. Spatiotemporal dynamics of line-of-sight (LOS) displacement in the landslide body are then derived between November 2020 and February 2022 by combining 40 TerraSAR-X (TSX) High-resolution Spotlight (HS) images and 76 medium-resolution Sentinel-1 (S1) SAR datasets using Multi-temporal InSAR (MTI) method. The InSAR-derived results are subsequently analyzed with ICA to find common deformation components of points between optical and MTI results, indicating the same temporal evolution in the deformation pattern. Finally, the complete 4D deformation field for the whole post-failure period is modeled using a decaying exponential model representing stress relaxation after the failure by integrating multiple remote sensing datasets. Cross-correlation analysis of Planet imagery shows a decaying exponential pattern of post-failure displacements with an approximately 94% reduction in the deformation rate after six months with respect to the co-failure event. MTI analysis suggests a maximum LOS displacement rate of approximately 30 cm/year over the main failure body from November 2020 to February 2022; while the high-resolution TSX datasets show irreplaceable advantages in choosing the number of measurement points in MTI analysis with the number of measurement points being five times larger than those obtained by S1 datasets. The ICA analysis reveals three main types of kinematic patterns in the temporal evolution of post-failure deformation in MTI results, the dominant one being an exponential declining pattern similar to the results from Planet observations. Integrated 4D deformation modeling suggests that the most significant post-failure displacement mainly occurred toward the west, amounting to 28 m during the entire post-failure acquisitions from June 2020 until February 2022. Additionally, maximum displacements of 17 m and 19 m occurred in this period toward the north and downward, respectively.
AB - A massive landslide often causes long-lasting instability dynamics that need to be analyzed in detail for risk management and mitigation. Multiple satellite remote sensing observations, in-situ measurements, and geophysical approaches have been jointly implemented to monitor and interpret the life cycle of landslides and their failure mechanisms from various perspectives. In this work, we propose a framework where satellite optical and synthetic aperture radar (SAR) remote sensing techniques are combined with feature extractions using independent component analysis (ICA) and a mathematical relaxation model to assess the complete four-dimensional (4D) spatiotemporal patterns of post-failure slope evolution. The large, deep-seated Aniangzhai landslide in Southwest China that occurred on 17 June 2020 is comprehensively analyzed and characterized for its post-failure mechanism. Time series of Planet high-resolution optical images are first explored to derive the large horizontal motions for the first six months after the failure. Spatiotemporal dynamics of line-of-sight (LOS) displacement in the landslide body are then derived between November 2020 and February 2022 by combining 40 TerraSAR-X (TSX) High-resolution Spotlight (HS) images and 76 medium-resolution Sentinel-1 (S1) SAR datasets using Multi-temporal InSAR (MTI) method. The InSAR-derived results are subsequently analyzed with ICA to find common deformation components of points between optical and MTI results, indicating the same temporal evolution in the deformation pattern. Finally, the complete 4D deformation field for the whole post-failure period is modeled using a decaying exponential model representing stress relaxation after the failure by integrating multiple remote sensing datasets. Cross-correlation analysis of Planet imagery shows a decaying exponential pattern of post-failure displacements with an approximately 94% reduction in the deformation rate after six months with respect to the co-failure event. MTI analysis suggests a maximum LOS displacement rate of approximately 30 cm/year over the main failure body from November 2020 to February 2022; while the high-resolution TSX datasets show irreplaceable advantages in choosing the number of measurement points in MTI analysis with the number of measurement points being five times larger than those obtained by S1 datasets. The ICA analysis reveals three main types of kinematic patterns in the temporal evolution of post-failure deformation in MTI results, the dominant one being an exponential declining pattern similar to the results from Planet observations. Integrated 4D deformation modeling suggests that the most significant post-failure displacement mainly occurred toward the west, amounting to 28 m during the entire post-failure acquisitions from June 2020 until February 2022. Additionally, maximum displacements of 17 m and 19 m occurred in this period toward the north and downward, respectively.
KW - 4D displacement
KW - Independent component analysis (ICA)
KW - Multi-sensor
KW - Multi-temporal InSAR (MTI)
KW - Post-failure
KW - Satellite remote sensing
UR - http://www.scopus.com/inward/record.url?scp=85146416029&partnerID=8YFLogxK
U2 - 10.1016/j.isprsjprs.2023.01.006
DO - 10.1016/j.isprsjprs.2023.01.006
M3 - Article
AN - SCOPUS:85146416029
VL - 196
SP - 402
EP - 414
JO - ISPRS Journal of Photogrammetry and Remote Sensing
JF - ISPRS Journal of Photogrammetry and Remote Sensing
SN - 0924-2716
ER -