Organisation placeholder image, no image found

Machine Learning Section

Organisational unit: Section/Division

Type of address: Visitor address.
Welfengarten 1
30167
Hannover
View graph of relations

Publications

  1. 2025
  2. Published

    Automl for Multi-Class Anomaly Compensation of Sensor Drift

    Schaller, M. C., Kruse, M., Ortega, A., Lindauer, M. & Rosenhahn, B., 15 Jun 2025, In: Measurement: Journal of the International Measurement Confederation. 250, 117097.

    Research output: Contribution to journalArticleResearchpeer review

  3. E-pub ahead of print

    Information Leakage Detection through Approximate Bayes-optimal Prediction

    Gupta, P., Wever, M. D. & Hüllermeier, E., Nov 2025, In: Information Sciences. 719, 122419.

    Research output: Contribution to journalArticleResearchpeer review

  4. E-pub ahead of print

    SynthACticBench: A Capability-Based Synthetic Benchmark for Algorithm Configuration

    Margraf, V., Lappe, A., Wever, M. D., Benjamins, C., Hüllermeier, E. & Lindauer, M., Jun 2025, (E-pub ahead of print) GECCO 2025 - Proceedings of the 2025 Genetic and Evolutionary Computation Conference . Association for Computing Machinery (ACM), (ACM Conferences).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  5. Published

    MO-SMAC: Multi-objective Sequential Model-based Algorithm Configuration

    Rook, J., Benjamins, C., Bossek, J., Trautmann, H., Hoos, H. & Lindauer, M., 10 Mar 2025, In: Evolutionary computation. 25, 1, p. 1-25

    Research output: Contribution to journalArticleResearchpeer review

  6. Accepted/In press

    Growing with Experience: Growing Neural Networks in Deep Reinforcement Learning

    Fehring, L., Eimer, T. & Lindauer, M., 15 Feb 2025, (Accepted/In press) 2025 Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2025).

    Research output: Chapter in book/report/conference proceedingConference abstractResearchpeer review

  7. Accepted/In press

    Moments Matter: Stabilizing Policy Optimization using Return Distributions

    Jabs, D., Mohan, A. & Lindauer, M., 15 Feb 2025, (Accepted/In press) 2025 Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2025).

    Research output: Chapter in book/report/conference proceedingConference abstractResearchpeer review

  8. Published

    auto-sktime: Automated Time Series Forecasting

    Zöller, M., Lindauer, M. & Huber, M., 3 Jan 2025, Proceedings of the 18TH Learning and Intelligent Optimization Conference (LION). Festa, P., Ferone, D., Pastore, T. & Pisacane, O. (eds.). p. 456–471 16 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 14990 LNCS).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  9. Accepted/In press

    Auto-nnU-Net: Towards Automated Medical Image Segmentation

    Becktepe, J., Hennig, L., Oeltze-Jafra, S. & Lindauer, M., 2025, (Accepted/In press) International Conference on Automated Machine Learning 2025.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  10. E-pub ahead of print

    Guidelines for the Quality Assessment of Energy-Aware NAS Benchmarks

    Kocher, N., Wassermann, C., Hennig, L., Seng, J., Lindauer, M., Hoos, H., Kersting, K. & Müller, M., 2025, (E-pub ahead of print) Castanet 2025 Workshop on Challenges Advances and Sustainability in AI HPC Interaction: In conjunction with the 25th IEEE ACM International Symposium on Cluster Cloud and Internet Computing.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  11. Published

    How Green is AutoML for Tabular Data?

    Neutatz, F., Lindauer, M. & Abedjan, Z., 2025, Proceedings 28th International Conference on Extending Database Technology ( EDBT 2025 ). p. 350–363

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  12. Accepted/In press

    Leveraging AutoML for Sustainable Deep Learning: A Multi- Objective HPO Approach on Deep Shift Neural Networks

    Hennig, L. & Lindauer, M., 2025, (Accepted/In press) Transactions on Machine Learning Research.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  13. Accepted/In press

    OpenML: Insights from ten years and more than a thousand papers

    Bischl, B., Casalicchio, G., Das, T., Feurer, M., Fischer, S., Gijsbers, P., Mukherjee, S., Müller, A., Németh, L., Oala, L., Purucker, L., Ravi, S., van Rijn, J. N., Singh, P., Vanschoren, J., van der Velde, J. & Wever, M. D., 2025, (Accepted/In press) In: Patterns. 2025

    Research output: Contribution to journalArticleResearchpeer review

  14. E-pub ahead of print

    Revisiting Learning Rate Control

    Henheik, M., Eimer, T. & Lindauer, M., 2025, (E-pub ahead of print) International Conference on Automated Machine Learning 2025.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  15. Accepted/In press

    RunAndSchedule2Survive: Algorithm Scheduling Based on Run2Survive

    Margraf, V., Naftali-Körner, T., Tornede, A. & Wever, M. D., 2025, (Accepted/In press) In: ACM Transactions on Evolutionary Learning and Optimization.

    Research output: Contribution to journalArticleResearchpeer review

  16. Accepted/In press

    State-Space Models for Tabular Prior-Data Fitted Networks

    Koch, F., Wever, M. D., Raisch, F. & Tischler, B., 2025, (Accepted/In press).

    Research output: Contribution to conferencePaperResearchpeer review

  17. E-pub ahead of print

    Task Scheduling & Forgetting in Multi-Task Reinforcement Learning

    Speckmann, M. & Eimer, T., 2025, (E-pub ahead of print) Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2025).

    Research output: Chapter in book/report/conference proceedingConference abstractResearchpeer review

  18. 2024
  19. E-pub ahead of print

    Bayesian Optimization for Protein Sequence Design: Back to Simplicity with Gaussian Processes

    Benjamins, C., Surana, S., Bent, O., Lindauer, M. & Duckworth, P., Dec 2024, (E-pub ahead of print) AI for Accelerated Materials Design - NeurIPS Workshop 2024.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  20. Published

    Reinforcing automated machine learning: bridging AutoML and reinforcement learning

    Eimer, T., 21 Nov 2024, Hannover. 91 p.

    Research output: ThesisDoctoral thesis

  21. Accepted/In press

    Towards Enhancing Predictive Representations using Relational Structure in Reinforcement Learning

    Mohan, A. & Lindauer, M., 30 Sept 2024, (Accepted/In press) The 17th European Workshop on Reinforcement Learning (EWRL 2024).

    Research output: Chapter in book/report/conference proceedingConference abstractResearchpeer review

  22. Published

    AMLTK: A Modular AutoML Toolkit in Python

    Bergman, E., Feurer, M., Bahram, A., Rezaei, A., Purucker, L., Segel, S., Lindauer, M. & Eggensperger, K., 14 Aug 2024, In: The Journal of Open Source Software. 9, 100, 4 p., 6367.

    Research output: Contribution to journalArticleResearchpeer review

Previous 1 2 3 4 5 6 Next