Publications
- 2025
- Published
Automl for Multi-Class Anomaly Compensation of Sensor Drift
Schaller, M. C., Kruse, M., Ortega, A., Lindauer, M. & Rosenhahn, B., 15 Jun 2025, In: Measurement: Journal of the International Measurement Confederation. 250, 117097.Research output: Contribution to journal › Article › Research › peer review
- E-pub ahead of print
Information Leakage Detection through Approximate Bayes-optimal Prediction
Gupta, P., Wever, M. D. & Hüllermeier, E., Nov 2025, In: Information Sciences. 719, 122419.Research output: Contribution to journal › Article › Research › peer review
- E-pub ahead of print
SynthACticBench: A Capability-Based Synthetic Benchmark for Algorithm Configuration
Margraf, V., Lappe, A., Wever, M. D., Benjamins, C., Hüllermeier, E. & Lindauer, M., Jun 2025, (E-pub ahead of print) GECCO 2025 - Proceedings of the 2025 Genetic and Evolutionary Computation Conference . Association for Computing Machinery (ACM), (ACM Conferences).Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- Published
MO-SMAC: Multi-objective Sequential Model-based Algorithm Configuration
Rook, J., Benjamins, C., Bossek, J., Trautmann, H., Hoos, H. & Lindauer, M., 10 Mar 2025, In: Evolutionary computation. 25, 1, p. 1-25Research output: Contribution to journal › Article › Research › peer review
- Accepted/In press
Growing with Experience: Growing Neural Networks in Deep Reinforcement Learning
Fehring, L., Eimer, T. & Lindauer, M., 15 Feb 2025, (Accepted/In press) 2025 Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2025).Research output: Chapter in book/report/conference proceeding › Conference abstract › Research › peer review
- Accepted/In press
Moments Matter: Stabilizing Policy Optimization using Return Distributions
Jabs, D., Mohan, A. & Lindauer, M., 15 Feb 2025, (Accepted/In press) 2025 Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2025).Research output: Chapter in book/report/conference proceeding › Conference abstract › Research › peer review
- Published
auto-sktime: Automated Time Series Forecasting
Zöller, M., Lindauer, M. & Huber, M., 3 Jan 2025, Proceedings of the 18TH Learning and Intelligent Optimization Conference (LION). Festa, P., Ferone, D., Pastore, T. & Pisacane, O. (eds.). p. 456–471 16 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 14990 LNCS).Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- Accepted/In press
Auto-nnU-Net: Towards Automated Medical Image Segmentation
Becktepe, J., Hennig, L., Oeltze-Jafra, S. & Lindauer, M., 2025, (Accepted/In press) International Conference on Automated Machine Learning 2025.Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- E-pub ahead of print
Guidelines for the Quality Assessment of Energy-Aware NAS Benchmarks
Kocher, N., Wassermann, C., Hennig, L., Seng, J., Lindauer, M., Hoos, H., Kersting, K. & Müller, M., 2025, (E-pub ahead of print) Castanet 2025 Workshop on Challenges Advances and Sustainability in AI HPC Interaction: In conjunction with the 25th IEEE ACM International Symposium on Cluster Cloud and Internet Computing.Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- Published
How Green is AutoML for Tabular Data?
Neutatz, F., Lindauer, M. & Abedjan, Z., 2025, Proceedings 28th International Conference on Extending Database Technology ( EDBT 2025 ). p. 350–363Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- Accepted/In press
Leveraging AutoML for Sustainable Deep Learning: A Multi- Objective HPO Approach on Deep Shift Neural Networks
Hennig, L. & Lindauer, M., 2025, (Accepted/In press) Transactions on Machine Learning Research.Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- Accepted/In press
OpenML: Insights from ten years and more than a thousand papers
Bischl, B., Casalicchio, G., Das, T., Feurer, M., Fischer, S., Gijsbers, P., Mukherjee, S., Müller, A., Németh, L., Oala, L., Purucker, L., Ravi, S., van Rijn, J. N., Singh, P., Vanschoren, J., van der Velde, J. & Wever, M. D., 2025, (Accepted/In press) In: Patterns. 2025Research output: Contribution to journal › Article › Research › peer review
- E-pub ahead of print
Revisiting Learning Rate Control
Henheik, M., Eimer, T. & Lindauer, M., 2025, (E-pub ahead of print) International Conference on Automated Machine Learning 2025.Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- Accepted/In press
RunAndSchedule2Survive: Algorithm Scheduling Based on Run2Survive
Margraf, V., Naftali-Körner, T., Tornede, A. & Wever, M. D., 2025, (Accepted/In press) In: ACM Transactions on Evolutionary Learning and Optimization.Research output: Contribution to journal › Article › Research › peer review
- Accepted/In press
State-Space Models for Tabular Prior-Data Fitted Networks
Koch, F., Wever, M. D., Raisch, F. & Tischler, B., 2025, (Accepted/In press).Research output: Contribution to conference › Paper › Research › peer review
- E-pub ahead of print
Task Scheduling & Forgetting in Multi-Task Reinforcement Learning
Speckmann, M. & Eimer, T., 2025, (E-pub ahead of print) Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2025).Research output: Chapter in book/report/conference proceeding › Conference abstract › Research › peer review
- 2024
- E-pub ahead of print
Bayesian Optimization for Protein Sequence Design: Back to Simplicity with Gaussian Processes
Benjamins, C., Surana, S., Bent, O., Lindauer, M. & Duckworth, P., Dec 2024, (E-pub ahead of print) AI for Accelerated Materials Design - NeurIPS Workshop 2024.Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
- Published
Reinforcing automated machine learning: bridging AutoML and reinforcement learning
Eimer, T., 21 Nov 2024, Hannover. 91 p.Research output: Thesis › Doctoral thesis
- Accepted/In press
Towards Enhancing Predictive Representations using Relational Structure in Reinforcement Learning
Mohan, A. & Lindauer, M., 30 Sept 2024, (Accepted/In press) The 17th European Workshop on Reinforcement Learning (EWRL 2024).Research output: Chapter in book/report/conference proceeding › Conference abstract › Research › peer review
- Published
AMLTK: A Modular AutoML Toolkit in Python
Bergman, E., Feurer, M., Bahram, A., Rezaei, A., Purucker, L., Segel, S., Lindauer, M. & Eggensperger, K., 14 Aug 2024, In: The Journal of Open Source Software. 9, 100, 4 p., 6367.Research output: Contribution to journal › Article › Research › peer review