Loading [MathJax]/extensions/tex2jax.js

Numerical algorithms

1 - 7 out of 7Page size: 20

Publications

  1. 2006

  2. Published

    Computing ECT-B-splines recursively

    Mühlbach, G. W. & Tang, Y., Jan 2006, In: Numerical algorithms. 41, 1, p. 35-78 44 p.

    Research output: Contribution to journalArticleResearchpeer review

  3. 2005

  4. Published

    Cardinal ECT-splines

    Tang, Y. & Mühlbach, G. W., 2005, In: Numerical algorithms. 38, 4, p. 259-283 25 p.

    Research output: Contribution to journalArticleResearchpeer review

  5. 1999

  6. Published

    A recurrence relation for generalized divided differences with respect to ECT-systems

    Mühlbach, G., Feb 1999, In: Numerical algorithms. 22, 3-4, p. 317-326 10 p.

    Research output: Contribution to journalArticleResearchpeer review

  7. 1994

  8. Published

    Multivariate polynomial interpolation under projectivities III: Remainder formulas

    Mühlbach, G. & Gasca, M., Mar 1994, In: Numerical algorithms. 8, 1, p. 103-109 7 p.

    Research output: Contribution to journalArticleResearchpeer review

  9. 1992

  10. Published

    The Neville-Aitken formula for rational interpolants with prescribed poles

    Carstensen, C. & Mühlbach, G., Dec 1992, In: Numerical algorithms. 3, 1, p. 133-141 9 p.

    Research output: Contribution to journalArticleResearchpeer review

  11. Published

    Multivariate polynomial interpolation under projectivities II: Neville-Aitken formulas

    Gasca, M. & Mühlbach, G., Oct 1992, In: Numerical algorithms. 2, 3, p. 255-277 23 p.

    Research output: Contribution to journalArticleResearchpeer review

  12. 1991

  13. Published

    Multivariate polynomial interpolation under projectivities part I: lagrange and newton interpolation formulas

    Mühlbach, G. & Gasca, M., Oct 1991, In: Numerical algorithms. 1, 3, p. 375-399 25 p.

    Research output: Contribution to journalArticleResearchpeer review