Thermal detuning of a bichromatic narrow linewidth optical cavity

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • L. D. Bonavena
  • M. Lequime
  • M. Vardaro
  • Y. Zhao
  • M. Barsuglia
  • M. Bawaj
  • A. Bertolini
  • R. Bonnand
  • E. Capocasa
  • M. De Laurentis
  • J. Ding
  • S. Di Pace
  • R. Flaminio
  • B. Garaventa
  • A. Grimaldi
  • Y. Guo
  • P.-E. Jacquet
  • A. Masserot
  • M. Mehmet
  • R. Passaquieti
  • L. Pinard
  • E. Polini
  • V. Sequino
  • F. Sorrentino
  • M. Tacca
  • H. Vahlbruch
  • J. P. Zendri

Externe Organisationen

  • Universität Padua
  • Astronomical Observatory of Padua
  • UMR CNRS 8009
  • Maastricht University
  • Nationaal instituut voor subatomaire fysica (Nikhef)
  • University of Perugia
  • Universität Neapel Parthenope
  • Istituto Nazionale di Fisica Nucleare (INFN)
  • Universität Rom III
  • Université de Montréal
  • Università degli studi di Genova (UniGe)
  • Università degli Studi di Trento
  • Sorbonne Université
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer043709
Seiten (von - bis)043709
Seitenumfang1
FachzeitschriftPhys. Rev. A
Jahrgang109
Ausgabenummer4
PublikationsstatusVeröffentlicht - 1 Apr. 2024

Abstract

In the Advanced Virgo+ interferometric gravitational-wave detector, the length control of the Fabry-Pérot cavities in the arms and of the detuned filter cavity, used for generating frequency-dependent squeezing, uses an auxiliary green beam at half of the operation laser wavelength (1064 nm). While operating the filter cavity with such a bichromatic control scheme for tens of hours, we observed that the mirror reflection phase shift of the fields at the two wavelengths responds differently to temperature changes in the mirrors, causing a change in the relative resonance condition of the two beams. In this paper we show that this thermal detuning effect can be explained by considering the thermomechanical properties of the mirror coating. Our experimental measurements are in good agreement with the theoretical predictions and allow us to drive requirements on the bicolor coating design and mirror temperature stability for long-term stable cavity control.

ASJC Scopus Sachgebiete

Zitieren

Thermal detuning of a bichromatic narrow linewidth optical cavity. / Bonavena, L. D.; Lequime, M.; Vardaro, M. et al.
in: Phys. Rev. A, Jahrgang 109, Nr. 4, 043709, 01.04.2024, S. 043709.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Bonavena, LD, Lequime, M, Vardaro, M, Zhao, Y, Barsuglia, M, Bawaj, M, Bertolini, A, Bonnand, R, Capocasa, E, De Laurentis, M, Ding, J, Di Pace, S, Flaminio, R, Garaventa, B, Grimaldi, A, Guo, Y, Jacquet, P-E, Masserot, A, Mehmet, M, Passaquieti, R, Pinard, L, Polini, E, Sequino, V, Sorrentino, F, Tacca, M, Vahlbruch, H & Zendri, JP 2024, 'Thermal detuning of a bichromatic narrow linewidth optical cavity', Phys. Rev. A, Jg. 109, Nr. 4, 043709, S. 043709. https://doi.org/10.1103/PhysRevA.109.043709
Bonavena, L. D., Lequime, M., Vardaro, M., Zhao, Y., Barsuglia, M., Bawaj, M., Bertolini, A., Bonnand, R., Capocasa, E., De Laurentis, M., Ding, J., Di Pace, S., Flaminio, R., Garaventa, B., Grimaldi, A., Guo, Y., Jacquet, P.-E., Masserot, A., Mehmet, M., ... Zendri, J. P. (2024). Thermal detuning of a bichromatic narrow linewidth optical cavity. Phys. Rev. A, 109(4), 043709. Artikel 043709. https://doi.org/10.1103/PhysRevA.109.043709
Bonavena LD, Lequime M, Vardaro M, Zhao Y, Barsuglia M, Bawaj M et al. Thermal detuning of a bichromatic narrow linewidth optical cavity. Phys. Rev. A. 2024 Apr 1;109(4):043709. 043709. doi: 10.1103/PhysRevA.109.043709
Bonavena, L. D. ; Lequime, M. ; Vardaro, M. et al. / Thermal detuning of a bichromatic narrow linewidth optical cavity. in: Phys. Rev. A. 2024 ; Jahrgang 109, Nr. 4. S. 043709.
Download
@article{07ace422ac9c4a489479b48e05868a06,
title = "Thermal detuning of a bichromatic narrow linewidth optical cavity",
abstract = "In the Advanced Virgo+ interferometric gravitational-wave detector, the length control of the Fabry-P{\'e}rot cavities in the arms and of the detuned filter cavity, used for generating frequency-dependent squeezing, uses an auxiliary green beam at half of the operation laser wavelength (1064 nm). While operating the filter cavity with such a bichromatic control scheme for tens of hours, we observed that the mirror reflection phase shift of the fields at the two wavelengths responds differently to temperature changes in the mirrors, causing a change in the relative resonance condition of the two beams. In this paper we show that this thermal detuning effect can be explained by considering the thermomechanical properties of the mirror coating. Our experimental measurements are in good agreement with the theoretical predictions and allow us to drive requirements on the bicolor coating design and mirror temperature stability for long-term stable cavity control.",
author = "Bonavena, {L. D.} and M. Lequime and M. Vardaro and Y. Zhao and M. Barsuglia and M. Bawaj and A. Bertolini and R. Bonnand and E. Capocasa and {De Laurentis}, M. and J. Ding and {Di Pace}, S. and R. Flaminio and B. Garaventa and A. Grimaldi and Y. Guo and P.-E. Jacquet and A. Masserot and M. Mehmet and R. Passaquieti and L. Pinard and E. Polini and V. Sequino and F. Sorrentino and M. Tacca and H. Vahlbruch and Zendri, {J. P.}",
note = "Funding Information: The authors gratefully acknowledge the support of the Max Planck Society, Leibniz Universit{\"a}t Hannover and Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through project Grant No. VA 1031/1-1 and Germany's Excellence Strategy EXC-2123 QuantumFrontiers 390837967 for the construction, installation, and operation of the squeezed-light source. The authors are also grateful to the Genova, Napoli, Padova, Perugia Roma I, and Trento Univeristies and sections of the Italian National Institute of Nuclear Physics (INFN) for the realization of the squeezed vacuum source bench among with the PLLs and the diagnostic homodyne electronics. We also thank the Particle Physics Laboratory of Annecy (LAPP) (F) for providing the suspended optical benches, the clean rooms around them, and the data acquisition system, the Dutch National Institute for Atomic Physics (Nikhef) for supplying the cavity vacuum system, the mechanical suspension for both the in-vacuum benches and the cavity mirrors, and the rf quadrant photodiode readout, the Laboratoire des Materiaux Avanc's (LMA) of Lyon (F) for the realization of the optical coatings, the Institute of Cosmos Sciences (ICCUB) for providing the in-vacuum position-sensitive detector, the Institute of High Energy Physics (IFAE) of Barcelona (E) for the realization and the installation of the vacuum baffle, the Rome Tor-Vergata group for the ring heaters, the Perugia group for the assembly of the mirrors, and the Napoli group for optical lever position sensors. Special thanks go to the staff of the European Gravitational Observatory (EGO) for the relevant role in the logistics, in the implementation of the structural changes, in the electronics cabling, in the development of customized electronics, and in the supply of the low-loss Faraday isolators. This work has been also supported by LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001).",
year = "2024",
month = apr,
day = "1",
doi = "10.1103/PhysRevA.109.043709",
language = "English",
volume = "109",
pages = "043709",
journal = "Phys. Rev. A",
issn = "2469-9926",
publisher = "American Physical Society",
number = "4",

}

Download

TY - JOUR

T1 - Thermal detuning of a bichromatic narrow linewidth optical cavity

AU - Bonavena, L. D.

AU - Lequime, M.

AU - Vardaro, M.

AU - Zhao, Y.

AU - Barsuglia, M.

AU - Bawaj, M.

AU - Bertolini, A.

AU - Bonnand, R.

AU - Capocasa, E.

AU - De Laurentis, M.

AU - Ding, J.

AU - Di Pace, S.

AU - Flaminio, R.

AU - Garaventa, B.

AU - Grimaldi, A.

AU - Guo, Y.

AU - Jacquet, P.-E.

AU - Masserot, A.

AU - Mehmet, M.

AU - Passaquieti, R.

AU - Pinard, L.

AU - Polini, E.

AU - Sequino, V.

AU - Sorrentino, F.

AU - Tacca, M.

AU - Vahlbruch, H.

AU - Zendri, J. P.

N1 - Funding Information: The authors gratefully acknowledge the support of the Max Planck Society, Leibniz Universität Hannover and Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through project Grant No. VA 1031/1-1 and Germany's Excellence Strategy EXC-2123 QuantumFrontiers 390837967 for the construction, installation, and operation of the squeezed-light source. The authors are also grateful to the Genova, Napoli, Padova, Perugia Roma I, and Trento Univeristies and sections of the Italian National Institute of Nuclear Physics (INFN) for the realization of the squeezed vacuum source bench among with the PLLs and the diagnostic homodyne electronics. We also thank the Particle Physics Laboratory of Annecy (LAPP) (F) for providing the suspended optical benches, the clean rooms around them, and the data acquisition system, the Dutch National Institute for Atomic Physics (Nikhef) for supplying the cavity vacuum system, the mechanical suspension for both the in-vacuum benches and the cavity mirrors, and the rf quadrant photodiode readout, the Laboratoire des Materiaux Avanc's (LMA) of Lyon (F) for the realization of the optical coatings, the Institute of Cosmos Sciences (ICCUB) for providing the in-vacuum position-sensitive detector, the Institute of High Energy Physics (IFAE) of Barcelona (E) for the realization and the installation of the vacuum baffle, the Rome Tor-Vergata group for the ring heaters, the Perugia group for the assembly of the mirrors, and the Napoli group for optical lever position sensors. Special thanks go to the staff of the European Gravitational Observatory (EGO) for the relevant role in the logistics, in the implementation of the structural changes, in the electronics cabling, in the development of customized electronics, and in the supply of the low-loss Faraday isolators. This work has been also supported by LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001).

PY - 2024/4/1

Y1 - 2024/4/1

N2 - In the Advanced Virgo+ interferometric gravitational-wave detector, the length control of the Fabry-Pérot cavities in the arms and of the detuned filter cavity, used for generating frequency-dependent squeezing, uses an auxiliary green beam at half of the operation laser wavelength (1064 nm). While operating the filter cavity with such a bichromatic control scheme for tens of hours, we observed that the mirror reflection phase shift of the fields at the two wavelengths responds differently to temperature changes in the mirrors, causing a change in the relative resonance condition of the two beams. In this paper we show that this thermal detuning effect can be explained by considering the thermomechanical properties of the mirror coating. Our experimental measurements are in good agreement with the theoretical predictions and allow us to drive requirements on the bicolor coating design and mirror temperature stability for long-term stable cavity control.

AB - In the Advanced Virgo+ interferometric gravitational-wave detector, the length control of the Fabry-Pérot cavities in the arms and of the detuned filter cavity, used for generating frequency-dependent squeezing, uses an auxiliary green beam at half of the operation laser wavelength (1064 nm). While operating the filter cavity with such a bichromatic control scheme for tens of hours, we observed that the mirror reflection phase shift of the fields at the two wavelengths responds differently to temperature changes in the mirrors, causing a change in the relative resonance condition of the two beams. In this paper we show that this thermal detuning effect can be explained by considering the thermomechanical properties of the mirror coating. Our experimental measurements are in good agreement with the theoretical predictions and allow us to drive requirements on the bicolor coating design and mirror temperature stability for long-term stable cavity control.

UR - http://www.scopus.com/inward/record.url?scp=85190342132&partnerID=8YFLogxK

U2 - 10.1103/PhysRevA.109.043709

DO - 10.1103/PhysRevA.109.043709

M3 - Article

VL - 109

SP - 043709

JO - Phys. Rev. A

JF - Phys. Rev. A

SN - 2469-9926

IS - 4

M1 - 043709

ER -