Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) |
Herausgeber/-innen | Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue |
Erscheinungsort | Torino, Italia |
Seiten | 16121-16134 |
Seitenumfang | 14 |
ISBN (elektronisch) | 9782493814104 |
Publikationsstatus | Veröffentlicht - 1 Mai 2024 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Theoretische Informatik
- Informatik (insg.)
- Theoretische Informatik und Mathematik
- Informatik (insg.)
- Angewandte Informatik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). Hrsg. / Nicoletta Calzolari; Min-Yen Kan; Veronique Hoste; Alessandro Lenci; Sakriani Sakti; Nianwen Xue. Torino, Italia, 2024. S. 16121-16134.
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - The Touché23-ValueEval Dataset for Identifying Human Values behind Arguments
AU - Mirzakhmedova, Nailia
AU - Kiesel, Johannes
AU - Alshomary, Milad
AU - Heinrich, Maximilian
AU - Handke, Nicolas
AU - Cai, Xiaoni
AU - Barriere, Valentin
AU - Dastgheib, Doratossadat
AU - Ghahroodi, Omid
AU - SadraeiJavaheri, MohammadAli
AU - Asgari, Ehsaneddin
AU - Kawaletz, Lea
AU - Wachsmuth, Henning
AU - Stein, Benno
N1 - Publisher Copyright: © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
PY - 2024/5/1
Y1 - 2024/5/1
N2 - While human values play a crucial role in making arguments persuasive, we currently lack the necessary extensive datasets to develop methods for analyzing the values underlying these arguments on a large scale. To address this gap, we present the Touché23-ValueEval dataset, an expansion of the Webis-ArgValues-22 dataset. We collected and annotated an additional 4780 new arguments, doubling the dataset`s size to 9324 arguments. These arguments were sourced from six diverse sources, covering religious texts, community discussions, free-text arguments, newspaper editorials, and political debates. Each argument is annotated by three crowdworkers for 54 human values, following the methodology established in the original dataset. The Touché23-ValueEval dataset was utilized in the SemEval 2023 Task 4. ValueEval: Identification of Human Values behind Arguments, where an ensemble of transformer models demonstrated state-of-the-art performance. Furthermore, our experiments show that a fine-tuned large language model, Llama-2-7B, achieves comparable results.
AB - While human values play a crucial role in making arguments persuasive, we currently lack the necessary extensive datasets to develop methods for analyzing the values underlying these arguments on a large scale. To address this gap, we present the Touché23-ValueEval dataset, an expansion of the Webis-ArgValues-22 dataset. We collected and annotated an additional 4780 new arguments, doubling the dataset`s size to 9324 arguments. These arguments were sourced from six diverse sources, covering religious texts, community discussions, free-text arguments, newspaper editorials, and political debates. Each argument is annotated by three crowdworkers for 54 human values, following the methodology established in the original dataset. The Touché23-ValueEval dataset was utilized in the SemEval 2023 Task 4. ValueEval: Identification of Human Values behind Arguments, where an ensemble of transformer models demonstrated state-of-the-art performance. Furthermore, our experiments show that a fine-tuned large language model, Llama-2-7B, achieves comparable results.
KW - Corpus (Creation, Annotation, etc.)
KW - Document Classification
KW - Text categorisation
UR - http://www.scopus.com/inward/record.url?scp=85195967977&partnerID=8YFLogxK
M3 - Conference contribution
SP - 16121
EP - 16134
BT - Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
A2 - Calzolari, Nicoletta
A2 - Kan, Min-Yen
A2 - Hoste, Veronique
A2 - Lenci, Alessandro
A2 - Sakti, Sakriani
A2 - Xue, Nianwen
CY - Torino, Italia
ER -