The Covariance Metric in the Blaschke Locus

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Xian Dai
  • Nikolas Eptaminitakis

Organisationseinheiten

Externe Organisationen

  • Ruhr-Universität Bochum
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer145
Seitenumfang54
FachzeitschriftJournal of Geometric Analysis
Jahrgang34
Ausgabenummer5
Frühes Online-Datum25 März 2024
PublikationsstatusVeröffentlicht - Mai 2024

Abstract

We prove that the Blaschke locus has the structure of a finite dimensional smooth manifold away from the Teichmüller space and study its Riemannian manifold structure with respect to the covariance metric introduced by Guillarmou, Knieper and Lefeuvre in Guillarmou et al. in (Ergod Theory Dyn Syst 43:974–1022, 2021). We also identify some families of geodesics in the Blaschke locus arising from Hitchin representations for orbifolds and show that they have infinite length with respect to the covariance metric.

ASJC Scopus Sachgebiete

Zitieren

The Covariance Metric in the Blaschke Locus. / Dai, Xian; Eptaminitakis, Nikolas.
in: Journal of Geometric Analysis, Jahrgang 34, Nr. 5, 145, 05.2024.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Dai X, Eptaminitakis N. The Covariance Metric in the Blaschke Locus. Journal of Geometric Analysis. 2024 Mai;34(5):145. Epub 2024 Mär 25. doi: 10.48550/arXiv.2301.05289, 10.1007/s12220-024-01586-w
Dai, Xian ; Eptaminitakis, Nikolas. / The Covariance Metric in the Blaschke Locus. in: Journal of Geometric Analysis. 2024 ; Jahrgang 34, Nr. 5.
Download
@article{bc6c6c3bc2c44e279f5b77f8dac17252,
title = "The Covariance Metric in the Blaschke Locus",
abstract = "We prove that the Blaschke locus has the structure of a finite dimensional smooth manifold away from the Teichm{\"u}ller space and study its Riemannian manifold structure with respect to the covariance metric introduced by Guillarmou, Knieper and Lefeuvre in Guillarmou et al. in (Ergod Theory Dyn Syst 43:974–1022, 2021). We also identify some families of geodesics in the Blaschke locus arising from Hitchin representations for orbifolds and show that they have infinite length with respect to the covariance metric.",
keywords = "53C21, 58J05, Blaschke locus, Covariance metric, Hitchin representations",
author = "Xian Dai and Nikolas Eptaminitakis",
note = "Funding Information: Open Access funding enabled and organized by Projekt DEAL.",
year = "2024",
month = may,
doi = "10.48550/arXiv.2301.05289",
language = "English",
volume = "34",
journal = "Journal of Geometric Analysis",
issn = "1050-6926",
publisher = "Springer New York",
number = "5",

}

Download

TY - JOUR

T1 - The Covariance Metric in the Blaschke Locus

AU - Dai, Xian

AU - Eptaminitakis, Nikolas

N1 - Funding Information: Open Access funding enabled and organized by Projekt DEAL.

PY - 2024/5

Y1 - 2024/5

N2 - We prove that the Blaschke locus has the structure of a finite dimensional smooth manifold away from the Teichmüller space and study its Riemannian manifold structure with respect to the covariance metric introduced by Guillarmou, Knieper and Lefeuvre in Guillarmou et al. in (Ergod Theory Dyn Syst 43:974–1022, 2021). We also identify some families of geodesics in the Blaschke locus arising from Hitchin representations for orbifolds and show that they have infinite length with respect to the covariance metric.

AB - We prove that the Blaschke locus has the structure of a finite dimensional smooth manifold away from the Teichmüller space and study its Riemannian manifold structure with respect to the covariance metric introduced by Guillarmou, Knieper and Lefeuvre in Guillarmou et al. in (Ergod Theory Dyn Syst 43:974–1022, 2021). We also identify some families of geodesics in the Blaschke locus arising from Hitchin representations for orbifolds and show that they have infinite length with respect to the covariance metric.

KW - 53C21

KW - 58J05

KW - Blaschke locus

KW - Covariance metric

KW - Hitchin representations

UR - http://www.scopus.com/inward/record.url?scp=85188621875&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2301.05289

DO - 10.48550/arXiv.2301.05289

M3 - Article

AN - SCOPUS:85188621875

VL - 34

JO - Journal of Geometric Analysis

JF - Journal of Geometric Analysis

SN - 1050-6926

IS - 5

M1 - 145

ER -