Sulfur speciation in dacitic melts using X-ray absorption near-edge structure spectroscopy of the S K-edge (S-XANES): Consideration of radiation-induced changes and the implications for sulfur in natural arc systems

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Jackie M. Kleinsasser
  • Brian A. Konecke
  • Adam C. Simon
  • Paul Northrup
  • Antonio Lanzirotti
  • Matthew Newville
  • Camelia Borca
  • Thomas Huthwelker
  • Francois Holtz

Organisationseinheiten

Externe Organisationen

  • University of Michigan
  • LLC
  • Stony Brook University (SBU)
  • University of Chicago
  • Paul Scherrer Institut (PSI)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1359-1374
Seitenumfang16
FachzeitschriftAmerican mineralogist
Jahrgang109
Ausgabenummer8
Frühes Online-Datum1 März 2024
PublikationsstatusVeröffentlicht - Aug. 2024

Abstract

The synchrotron technique of micro X-ray absorption near-edge structure spectroscopy at the sulfur K-edge (S-XANES) provides a unique opportunity to measure the proportion of different oxidation states of sulfur (S) in silicate glasses. Although applied extensively in the analysis of basaltic silicate glasses, few S-XANES studies have investigated variations in S oxidation states with fO2 in felsic silicate glasses. In addition, no study has systematically compared the S-XANES results obtained from the same samples at different photon flux densities to quantify the relationship between exposure time and changes in S speciation in silicate glass, as has been done for Fe and V. This study evaluates observed differences in S speciation measured in experimentally produced H2O-saturated dacitic glasses over a range of reducing to oxidizing conditions (from log fO2 = ΔFMQ-0.7 to ΔFMQ+3.3; FMQ is the fayalite-magnetite-quartz mineral redox buffer) and equilibrated at 1000 °C and 300 MPa. S-XANES spectra were collected at three different photon flux densities using three microspectroscopy beamlines. As is observed in S-XANES analyses of basaltic silicate glasses, beam-induced changes to the S6+/ΣS are observed as a function of photon flux density and beam exposure time. Our results demonstrate that silicate glasses of dacitic composition undergo beam-induced photo-reduction in samples equilibrated at ΔFMQ > +1.75 and photo-oxidation if equilibrated at ΔFMQ < +1. The time required to observe beam-induced changes in the spectra varies as a function of flux density, and our study establishes an upper photon density limit at ~1.0 × 1012 photons/µm2. The S6+/ΣS calculated from spectra collected below this absorbed photon limit at intermediate flux densities (~1–4 × 109 photons/s per µm2) are affected by beam damage, as no conditions were found to be completely free of beam-induced changes. However, the S6+/ΣS ratios calculated below the limit at intermediate flux densities are consistent with thermodynamic constraints, demonstrating that S6+/ΣS ratios calculated from S-XANES spectra can be considered reliable for estimating the oxygen fugacity. Our results carry important implications for the S budget of felsic magmas and dissolution mechanisms in evolved melts. While our results from all three flux densities show the presence of S4+ dissolved in relatively oxidized (ΔFMQ > +1.75) dacitic glass, even in the spectra exposed to the lowest photon densities, we are unable to rule out the possibility that the S4+ signal is the result of instantaneous X-ray irradiation induced beam damage using S-XANES alone. When our spectra are compared to S-XANES spectra from basaltic silicate glasses, important differences exist in the solubility of S2– and S6+ between dacitic silicate melts, pointing to differences in solubility mechanisms as melt composition changes. This study highlights the need for further investigation into beam damage systematics, presence of S4+, and the solubility mechanisms of different oxidation states of S as silicate melt composition changes.

ASJC Scopus Sachgebiete

Zitieren

Sulfur speciation in dacitic melts using X-ray absorption near-edge structure spectroscopy of the S K-edge (S-XANES): Consideration of radiation-induced changes and the implications for sulfur in natural arc systems. / Kleinsasser, Jackie M.; Konecke, Brian A.; Simon, Adam C. et al.
in: American mineralogist, Jahrgang 109, Nr. 8, 08.2024, S. 1359-1374.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{aca2d686c33e4741a767c0916fc5a08b,
title = "Sulfur speciation in dacitic melts using X-ray absorption near-edge structure spectroscopy of the S K-edge (S-XANES): Consideration of radiation-induced changes and the implications for sulfur in natural arc systems",
abstract = "The synchrotron technique of micro X-ray absorption near-edge structure spectroscopy at the sulfur K-edge (S-XANES) provides a unique opportunity to measure the proportion of different oxidation states of sulfur (S) in silicate glasses. Although applied extensively in the analysis of basaltic silicate glasses, few S-XANES studies have investigated variations in S oxidation states with fO2 in felsic silicate glasses. In addition, no study has systematically compared the S-XANES results obtained from the same samples at different photon flux densities to quantify the relationship between exposure time and changes in S speciation in silicate glass, as has been done for Fe and V. This study evaluates observed differences in S speciation measured in experimentally produced H2O-saturated dacitic glasses over a range of reducing to oxidizing conditions (from log fO2 = ΔFMQ-0.7 to ΔFMQ+3.3; FMQ is the fayalite-magnetite-quartz mineral redox buffer) and equilibrated at 1000 °C and 300 MPa. S-XANES spectra were collected at three different photon flux densities using three microspectroscopy beamlines. As is observed in S-XANES analyses of basaltic silicate glasses, beam-induced changes to the S6+/ΣS are observed as a function of photon flux density and beam exposure time. Our results demonstrate that silicate glasses of dacitic composition undergo beam-induced photo-reduction in samples equilibrated at ΔFMQ > +1.75 and photo-oxidation if equilibrated at ΔFMQ < +1. The time required to observe beam-induced changes in the spectra varies as a function of flux density, and our study establishes an upper photon density limit at ~1.0 × 1012 photons/µm2. The S6+/ΣS calculated from spectra collected below this absorbed photon limit at intermediate flux densities (~1–4 × 109 photons/s per µm2) are affected by beam damage, as no conditions were found to be completely free of beam-induced changes. However, the S6+/ΣS ratios calculated below the limit at intermediate flux densities are consistent with thermodynamic constraints, demonstrating that S6+/ΣS ratios calculated from S-XANES spectra can be considered reliable for estimating the oxygen fugacity. Our results carry important implications for the S budget of felsic magmas and dissolution mechanisms in evolved melts. While our results from all three flux densities show the presence of S4+ dissolved in relatively oxidized (ΔFMQ > +1.75) dacitic glass, even in the spectra exposed to the lowest photon densities, we are unable to rule out the possibility that the S4+ signal is the result of instantaneous X-ray irradiation induced beam damage using S-XANES alone. When our spectra are compared to S-XANES spectra from basaltic silicate glasses, important differences exist in the solubility of S2– and S6+ between dacitic silicate melts, pointing to differences in solubility mechanisms as melt composition changes. This study highlights the need for further investigation into beam damage systematics, presence of S4+, and the solubility mechanisms of different oxidation states of S as silicate melt composition changes.",
keywords = "beam damage, oxidation states, S-XANES, sulfate, sulfide, Sulfur",
author = "Kleinsasser, {Jackie M.} and Konecke, {Brian A.} and Simon, {Adam C.} and Paul Northrup and Antonio Lanzirotti and Matthew Newville and Camelia Borca and Thomas Huthwelker and Francois Holtz",
note = "Publisher Copyright: {\textcopyright} 2024 Walter de Gruyter GmbH. All rights reserved.",
year = "2024",
month = aug,
doi = "10.2138/am-2022-8833",
language = "English",
volume = "109",
pages = "1359--1374",
journal = "American mineralogist",
issn = "0003-004X",
publisher = "Walter de Gruyter GmbH",
number = "8",

}

Download

TY - JOUR

T1 - Sulfur speciation in dacitic melts using X-ray absorption near-edge structure spectroscopy of the S K-edge (S-XANES)

T2 - Consideration of radiation-induced changes and the implications for sulfur in natural arc systems

AU - Kleinsasser, Jackie M.

AU - Konecke, Brian A.

AU - Simon, Adam C.

AU - Northrup, Paul

AU - Lanzirotti, Antonio

AU - Newville, Matthew

AU - Borca, Camelia

AU - Huthwelker, Thomas

AU - Holtz, Francois

N1 - Publisher Copyright: © 2024 Walter de Gruyter GmbH. All rights reserved.

PY - 2024/8

Y1 - 2024/8

N2 - The synchrotron technique of micro X-ray absorption near-edge structure spectroscopy at the sulfur K-edge (S-XANES) provides a unique opportunity to measure the proportion of different oxidation states of sulfur (S) in silicate glasses. Although applied extensively in the analysis of basaltic silicate glasses, few S-XANES studies have investigated variations in S oxidation states with fO2 in felsic silicate glasses. In addition, no study has systematically compared the S-XANES results obtained from the same samples at different photon flux densities to quantify the relationship between exposure time and changes in S speciation in silicate glass, as has been done for Fe and V. This study evaluates observed differences in S speciation measured in experimentally produced H2O-saturated dacitic glasses over a range of reducing to oxidizing conditions (from log fO2 = ΔFMQ-0.7 to ΔFMQ+3.3; FMQ is the fayalite-magnetite-quartz mineral redox buffer) and equilibrated at 1000 °C and 300 MPa. S-XANES spectra were collected at three different photon flux densities using three microspectroscopy beamlines. As is observed in S-XANES analyses of basaltic silicate glasses, beam-induced changes to the S6+/ΣS are observed as a function of photon flux density and beam exposure time. Our results demonstrate that silicate glasses of dacitic composition undergo beam-induced photo-reduction in samples equilibrated at ΔFMQ > +1.75 and photo-oxidation if equilibrated at ΔFMQ < +1. The time required to observe beam-induced changes in the spectra varies as a function of flux density, and our study establishes an upper photon density limit at ~1.0 × 1012 photons/µm2. The S6+/ΣS calculated from spectra collected below this absorbed photon limit at intermediate flux densities (~1–4 × 109 photons/s per µm2) are affected by beam damage, as no conditions were found to be completely free of beam-induced changes. However, the S6+/ΣS ratios calculated below the limit at intermediate flux densities are consistent with thermodynamic constraints, demonstrating that S6+/ΣS ratios calculated from S-XANES spectra can be considered reliable for estimating the oxygen fugacity. Our results carry important implications for the S budget of felsic magmas and dissolution mechanisms in evolved melts. While our results from all three flux densities show the presence of S4+ dissolved in relatively oxidized (ΔFMQ > +1.75) dacitic glass, even in the spectra exposed to the lowest photon densities, we are unable to rule out the possibility that the S4+ signal is the result of instantaneous X-ray irradiation induced beam damage using S-XANES alone. When our spectra are compared to S-XANES spectra from basaltic silicate glasses, important differences exist in the solubility of S2– and S6+ between dacitic silicate melts, pointing to differences in solubility mechanisms as melt composition changes. This study highlights the need for further investigation into beam damage systematics, presence of S4+, and the solubility mechanisms of different oxidation states of S as silicate melt composition changes.

AB - The synchrotron technique of micro X-ray absorption near-edge structure spectroscopy at the sulfur K-edge (S-XANES) provides a unique opportunity to measure the proportion of different oxidation states of sulfur (S) in silicate glasses. Although applied extensively in the analysis of basaltic silicate glasses, few S-XANES studies have investigated variations in S oxidation states with fO2 in felsic silicate glasses. In addition, no study has systematically compared the S-XANES results obtained from the same samples at different photon flux densities to quantify the relationship between exposure time and changes in S speciation in silicate glass, as has been done for Fe and V. This study evaluates observed differences in S speciation measured in experimentally produced H2O-saturated dacitic glasses over a range of reducing to oxidizing conditions (from log fO2 = ΔFMQ-0.7 to ΔFMQ+3.3; FMQ is the fayalite-magnetite-quartz mineral redox buffer) and equilibrated at 1000 °C and 300 MPa. S-XANES spectra were collected at three different photon flux densities using three microspectroscopy beamlines. As is observed in S-XANES analyses of basaltic silicate glasses, beam-induced changes to the S6+/ΣS are observed as a function of photon flux density and beam exposure time. Our results demonstrate that silicate glasses of dacitic composition undergo beam-induced photo-reduction in samples equilibrated at ΔFMQ > +1.75 and photo-oxidation if equilibrated at ΔFMQ < +1. The time required to observe beam-induced changes in the spectra varies as a function of flux density, and our study establishes an upper photon density limit at ~1.0 × 1012 photons/µm2. The S6+/ΣS calculated from spectra collected below this absorbed photon limit at intermediate flux densities (~1–4 × 109 photons/s per µm2) are affected by beam damage, as no conditions were found to be completely free of beam-induced changes. However, the S6+/ΣS ratios calculated below the limit at intermediate flux densities are consistent with thermodynamic constraints, demonstrating that S6+/ΣS ratios calculated from S-XANES spectra can be considered reliable for estimating the oxygen fugacity. Our results carry important implications for the S budget of felsic magmas and dissolution mechanisms in evolved melts. While our results from all three flux densities show the presence of S4+ dissolved in relatively oxidized (ΔFMQ > +1.75) dacitic glass, even in the spectra exposed to the lowest photon densities, we are unable to rule out the possibility that the S4+ signal is the result of instantaneous X-ray irradiation induced beam damage using S-XANES alone. When our spectra are compared to S-XANES spectra from basaltic silicate glasses, important differences exist in the solubility of S2– and S6+ between dacitic silicate melts, pointing to differences in solubility mechanisms as melt composition changes. This study highlights the need for further investigation into beam damage systematics, presence of S4+, and the solubility mechanisms of different oxidation states of S as silicate melt composition changes.

KW - beam damage

KW - oxidation states

KW - S-XANES

KW - sulfate

KW - sulfide

KW - Sulfur

UR - http://www.scopus.com/inward/record.url?scp=85191745288&partnerID=8YFLogxK

U2 - 10.2138/am-2022-8833

DO - 10.2138/am-2022-8833

M3 - Article

AN - SCOPUS:85191745288

VL - 109

SP - 1359

EP - 1374

JO - American mineralogist

JF - American mineralogist

SN - 0003-004X

IS - 8

ER -

Von denselben Autoren